Difference between revisions of "Stationary phase, method of the"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (fixing superscript) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0872701.png | ||
+ | $#A+1 = 77 n = 0 | ||
+ | $#C+1 = 77 : ~/encyclopedia/old_files/data/S087/S.0807270 Stationary phase, method of the | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A method for calculating the asymptotics of integrals of rapidly-oscillating functions: | A method for calculating the asymptotics of integrals of rapidly-oscillating functions: | ||
− | + | $$ \tag{* } | |
+ | F( \lambda ) = \int\limits _ \Omega f( x) e ^ {i \lambda S( x) } dx, | ||
+ | $$ | ||
− | where | + | where $ x \in \mathbf R ^ {n} $, |
+ | $ \lambda > 0 $, | ||
+ | $ \lambda \rightarrow + \infty $, | ||
+ | is a large parameter, $ \Omega $ | ||
+ | is a bounded domain, the function $ S( x) $ (the phase) is real, the function $ f( x) $ | ||
+ | is complex, and $ f, S \in C ^ \infty ( \mathbf R ^ {n} ) $. | ||
+ | If $ f \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $, | ||
+ | i.e. $ f $ | ||
+ | has compact support, and the phase $ S( x) $ | ||
+ | does not have stationary points (i.e. points at which $ S ^ \prime ( x) = 0 $) | ||
+ | on $ \supp f $, | ||
+ | $ \Omega = \mathbf R ^ {n} $, | ||
+ | then $ F( \lambda ) = O( \lambda ^ {- n } ) $, | ||
+ | for all $ n $ | ||
+ | as $ \lambda \rightarrow + \infty $. | ||
+ | Therefore, when $ \lambda \rightarrow + \infty $, | ||
+ | the points of stationary phase and the boundary $ \partial \Omega $ | ||
+ | give the essential contribution to the asymptotics of the integral (*). The integrals | ||
− | + | $$ | |
+ | V _ {x ^ {0} } ( \lambda ) = \ | ||
+ | \int\limits _ \Omega f( x) \phi _ {0} ( x) e ^ {i \lambda S( x) } dx , | ||
+ | $$ | ||
− | + | $$ | |
+ | V _ {\partial \Omega } ( \lambda ) = \int\limits _ \Omega | ||
+ | f( x) \phi _ {\partial \Omega } ( x) e ^ {i \lambda S( x) } dx | ||
+ | $$ | ||
− | are called the contributions from the isolated stationary point | + | are called the contributions from the isolated stationary point $ x ^ {0} $ |
+ | and the boundary, respectively, where $ \phi _ {0} \in C _ {0} ^ \infty ( \Omega ) $, | ||
+ | $ \phi _ {0} \equiv 1 $ | ||
+ | near the point $ x ^ {0} $ | ||
+ | and $ \supp \phi _ {0} $ | ||
+ | does not contain any other stationary points, $ \phi _ {\partial \Omega } \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $ | ||
+ | and $ \phi _ {\partial \Omega } \equiv 1 $ | ||
+ | in a certain neighbourhood of the boundary. For $ n= 1 $, | ||
+ | $ \Omega = ( a, b) $: | ||
− | 1) | + | 1) $ V _ {a} ( \lambda ) = |
+ | \frac{i}{\lambda S ^ \prime ( a) } | ||
+ | e ^ {i \lambda S( a) } [ f( a) + O( \lambda ^ {-1} )] $, | ||
+ | if $ S ^ \prime ( a) \neq 0 $; | ||
2) | 2) | ||
− | + | $$ | |
+ | V _ {x ^ {0} } ( \lambda ) = \sqrt { | ||
+ | \frac{2 \pi }{\lambda | S ^ {\prime\prime} ( x ^ {0} ) | } | ||
+ | } e ^ {i ( \lambda S ( x ^ {0} ) + \pi \delta _ {0} / 4 ) } \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | [ f( x ^ {0} ) + O( \lambda ^ {-1} )],\ \ | ||
+ | \delta _ {0} = \mathop{\rm sgn} S ^ {\prime\prime} ( x ^ {0} ), | ||
+ | $$ | ||
− | if | + | if $ x ^ {0} $ |
+ | is an interior point of $ \Omega $ | ||
+ | and $ S ^ \prime ( x ^ {0} ) = 0 $, | ||
+ | $ S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $. | ||
− | Detailed research has been carried out in the case where | + | Detailed research has been carried out in the case where $ n= 1 $, |
+ | the phase $ S $ | ||
+ | has a finite number of stationary points, all of finite multiplicity, and the function $ f $ | ||
+ | has zeros of finite multiplicity at these points and at the end-points of an interval $ \Omega $. | ||
+ | Asymptotic expansions have been obtained. The case where the functions $ f $ | ||
+ | and $ S $ | ||
+ | have power singularities has also been studied: for example, $ f = x ^ \alpha f _ {1} ( x) $, | ||
+ | $ S = x ^ \beta S _ {1} ( x) $, | ||
+ | where $ f _ {1} $, | ||
+ | $ S _ {1} $ | ||
+ | are smooth functions when $ x = 0 $, | ||
+ | $ \alpha > - 1 $, | ||
+ | $ \beta > 0 $. | ||
− | Let | + | Let $ n \geq 2 $, |
+ | and let $ x ^ {0} \in \Omega $ | ||
+ | be a non-degenerate stationary point (i.e. $ \Delta _ {S} ( x ^ {0} ) = \mathop{\rm det} S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $). | ||
+ | The contribution from the point $ x ^ {0} $ | ||
+ | is then equal to | ||
− | + | $$ | |
+ | V _ {x ^ {0} } ( \lambda ) = \ | ||
+ | \left ( | ||
+ | \frac{2 \pi } \lambda | ||
+ | \right ) ^ {n/2} | \Delta _ {S} ( x ^ {0} ) | ^ {-1/2} \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \mathop{\rm exp} \left [ i \left ( \lambda S( x ^ {0} ) + + | ||
+ | \frac \pi {4} | ||
− | + | \delta _ {S} ( x ^ {0} ) \right ) \right ] [ f( x ^ {0} ) + O( \lambda ^ {-1} )], | |
+ | $$ | ||
− | + | where $ \delta _ {S} ( x ^ {0} ) $ | |
+ | is the [[Signature|signature]] of the matrix $ S ^ {\prime\prime} ( x ^ {0} ) $. | ||
+ | There is also an asymptotic series for $ V _ {x ^ {0} } ( \lambda ) $ (for the formulas of the contribution $ V _ {\partial \Omega } ( \lambda ) $ | ||
+ | in the case of a smooth boundary, see [[#References|[5]]]). | ||
− | + | If $ x ^ {0} \in \Omega $ | |
+ | is a stationary point of finite multiplicity, then (see [[#References|[6]]]) | ||
− | + | $$ | |
+ | V _ {x ^ {0} } ( \lambda ) \sim \mathop{\rm exp} [ i \lambda S( x ^ {0} )] \sum _ { k= 0} ^ \infty \left ( \sum _ { l= 0} ^ { N } a _ {kl} \lambda ^ {- r _ {k} } ( \mathop{\rm ln} \lambda ) ^ {l} \right ) , | ||
+ | $$ | ||
− | Studies have been made on the case where the phase | + | where $ r _ {k} $ |
+ | are rational numbers, $ n/2 \leq r _ {0} < \dots < r _ {k} \rightarrow + \infty $. | ||
+ | Degenerate stationary points have been studied, cf. [[#References|[3]]], [[#References|[4]]]. | ||
+ | |||
+ | Studies have been made on the case where the phase $ S = S( x, \alpha ) $ | ||
+ | depends on a real parameter $ \alpha $, | ||
+ | and for small $ | \alpha | $ | ||
+ | has two close non-degenerate stationary points. In this case, the asymptotics of the integral $ F( \lambda , \alpha ) $ | ||
+ | can be expressed in terms of [[Airy functions|Airy functions]] (see [[#References|[5]]], [[#References|[10]]]). The method of the stationary phase has an operator variant: $ \lambda = A $, | ||
+ | where $ A $ | ||
+ | is the infinitesimal operator of the strongly-continuous group $ \{ e ^ {itA} \} $ | ||
+ | of operators bounded on the axis $ - \infty < t < \infty $, | ||
+ | acting on a Banach space $ B $, | ||
+ | and $ f( x) $, | ||
+ | $ S( x) $ | ||
+ | are smooth functions with values in $ B $[[#References|[9]]]. If the functions are analytic, then the method of the stationary phase is a particular case of the [[Saddle point method|saddle point method]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Thomson, ''Philos. Mag.'' , '''23''' (1887) pp. 252–255</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) {{MR|0081379}} {{MR|0078494}} {{ZBL|0072.11703}} {{ZBL|0070.29002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.Ya. Rieksteyn'sh, "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) {{MR|0435697}} {{ZBL|0308.41023}} {{ZBL|0303.41035}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah, "Resolution of singularities and division of distributions" ''Comm. Pure Appl. Math.'' , '''23''' : 2 (1970) pp. 145–150 {{MR|0256156}} {{ZBL|0188.19405}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.I. Arnol'd, "Remarks on the stationary phase method and Coxeter numbers" ''Russian Math. Surveys'' , '''28''' : 5 (1973) pp. 19–48 ''Uspekhi Mat. Nauk'' , '''28''' : 5 (1973) pp. 17–44 {{MR|}} {{ZBL|0291.40005}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Varchenko, "Newton polyhedra and estimation of oscillating integrals" ''Funct. Anal. Appl'' , '''10''' : 3 (1976) pp. 175–196 ''Funktsional. Anal. i Prilozhen.'' , '''10''' : 3 (1976) pp. 13–38 {{MR|}} {{ZBL|0351.32011}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.P. Maslov, M.V. Fedoryuk, "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian) {{MR|}} {{ZBL|0458.58001}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.V. Fedoryuk, "Asymptotics. Integrals and series" , Moscow (1987) (In Russian) {{MR|0950167}} {{ZBL|0641.41001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Thomson, ''Philos. Mag.'' , '''23''' (1887) pp. 252–255</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) {{MR|0081379}} {{MR|0078494}} {{ZBL|0072.11703}} {{ZBL|0070.29002}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.Ya. Rieksteyn'sh, "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) {{MR|0435697}} {{ZBL|0308.41023}} {{ZBL|0303.41035}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.F. Atiyah, "Resolution of singularities and division of distributions" ''Comm. Pure Appl. Math.'' , '''23''' : 2 (1970) pp. 145–150 {{MR|0256156}} {{ZBL|0188.19405}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.I. Arnol'd, "Remarks on the stationary phase method and Coxeter numbers" ''Russian Math. Surveys'' , '''28''' : 5 (1973) pp. 19–48 ''Uspekhi Mat. Nauk'' , '''28''' : 5 (1973) pp. 17–44 {{MR|}} {{ZBL|0291.40005}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Varchenko, "Newton polyhedra and estimation of oscillating integrals" ''Funct. Anal. Appl'' , '''10''' : 3 (1976) pp. 175–196 ''Funktsional. Anal. i Prilozhen.'' , '''10''' : 3 (1976) pp. 13–38 {{MR|}} {{ZBL|0351.32011}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.P. Maslov, M.V. Fedoryuk, "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian) {{MR|}} {{ZBL|0458.58001}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.V. Fedoryuk, "Asymptotics. Integrals and series" , Moscow (1987) (In Russian) {{MR|0950167}} {{ZBL|0641.41001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:08, 4 March 2022
A method for calculating the asymptotics of integrals of rapidly-oscillating functions:
$$ \tag{* } F( \lambda ) = \int\limits _ \Omega f( x) e ^ {i \lambda S( x) } dx, $$
where $ x \in \mathbf R ^ {n} $, $ \lambda > 0 $, $ \lambda \rightarrow + \infty $, is a large parameter, $ \Omega $ is a bounded domain, the function $ S( x) $ (the phase) is real, the function $ f( x) $ is complex, and $ f, S \in C ^ \infty ( \mathbf R ^ {n} ) $. If $ f \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $, i.e. $ f $ has compact support, and the phase $ S( x) $ does not have stationary points (i.e. points at which $ S ^ \prime ( x) = 0 $) on $ \supp f $, $ \Omega = \mathbf R ^ {n} $, then $ F( \lambda ) = O( \lambda ^ {- n } ) $, for all $ n $ as $ \lambda \rightarrow + \infty $. Therefore, when $ \lambda \rightarrow + \infty $, the points of stationary phase and the boundary $ \partial \Omega $ give the essential contribution to the asymptotics of the integral (*). The integrals
$$ V _ {x ^ {0} } ( \lambda ) = \ \int\limits _ \Omega f( x) \phi _ {0} ( x) e ^ {i \lambda S( x) } dx , $$
$$ V _ {\partial \Omega } ( \lambda ) = \int\limits _ \Omega f( x) \phi _ {\partial \Omega } ( x) e ^ {i \lambda S( x) } dx $$
are called the contributions from the isolated stationary point $ x ^ {0} $ and the boundary, respectively, where $ \phi _ {0} \in C _ {0} ^ \infty ( \Omega ) $, $ \phi _ {0} \equiv 1 $ near the point $ x ^ {0} $ and $ \supp \phi _ {0} $ does not contain any other stationary points, $ \phi _ {\partial \Omega } \in C _ {0} ^ \infty ( \mathbf R ^ {n} ) $ and $ \phi _ {\partial \Omega } \equiv 1 $ in a certain neighbourhood of the boundary. For $ n= 1 $, $ \Omega = ( a, b) $:
1) $ V _ {a} ( \lambda ) = \frac{i}{\lambda S ^ \prime ( a) } e ^ {i \lambda S( a) } [ f( a) + O( \lambda ^ {-1} )] $, if $ S ^ \prime ( a) \neq 0 $;
2)
$$ V _ {x ^ {0} } ( \lambda ) = \sqrt { \frac{2 \pi }{\lambda | S ^ {\prime\prime} ( x ^ {0} ) | } } e ^ {i ( \lambda S ( x ^ {0} ) + \pi \delta _ {0} / 4 ) } \times $$
$$ \times [ f( x ^ {0} ) + O( \lambda ^ {-1} )],\ \ \delta _ {0} = \mathop{\rm sgn} S ^ {\prime\prime} ( x ^ {0} ), $$
if $ x ^ {0} $ is an interior point of $ \Omega $ and $ S ^ \prime ( x ^ {0} ) = 0 $, $ S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $.
Detailed research has been carried out in the case where $ n= 1 $, the phase $ S $ has a finite number of stationary points, all of finite multiplicity, and the function $ f $ has zeros of finite multiplicity at these points and at the end-points of an interval $ \Omega $. Asymptotic expansions have been obtained. The case where the functions $ f $ and $ S $ have power singularities has also been studied: for example, $ f = x ^ \alpha f _ {1} ( x) $, $ S = x ^ \beta S _ {1} ( x) $, where $ f _ {1} $, $ S _ {1} $ are smooth functions when $ x = 0 $, $ \alpha > - 1 $, $ \beta > 0 $.
Let $ n \geq 2 $, and let $ x ^ {0} \in \Omega $ be a non-degenerate stationary point (i.e. $ \Delta _ {S} ( x ^ {0} ) = \mathop{\rm det} S ^ {\prime\prime} ( x ^ {0} ) \neq 0 $). The contribution from the point $ x ^ {0} $ is then equal to
$$ V _ {x ^ {0} } ( \lambda ) = \ \left ( \frac{2 \pi } \lambda \right ) ^ {n/2} | \Delta _ {S} ( x ^ {0} ) | ^ {-1/2} \times $$
$$ \times \mathop{\rm exp} \left [ i \left ( \lambda S( x ^ {0} ) + + \frac \pi {4} \delta _ {S} ( x ^ {0} ) \right ) \right ] [ f( x ^ {0} ) + O( \lambda ^ {-1} )], $$
where $ \delta _ {S} ( x ^ {0} ) $ is the signature of the matrix $ S ^ {\prime\prime} ( x ^ {0} ) $. There is also an asymptotic series for $ V _ {x ^ {0} } ( \lambda ) $ (for the formulas of the contribution $ V _ {\partial \Omega } ( \lambda ) $ in the case of a smooth boundary, see [5]).
If $ x ^ {0} \in \Omega $ is a stationary point of finite multiplicity, then (see [6])
$$ V _ {x ^ {0} } ( \lambda ) \sim \mathop{\rm exp} [ i \lambda S( x ^ {0} )] \sum _ { k= 0} ^ \infty \left ( \sum _ { l= 0} ^ { N } a _ {kl} \lambda ^ {- r _ {k} } ( \mathop{\rm ln} \lambda ) ^ {l} \right ) , $$
where $ r _ {k} $ are rational numbers, $ n/2 \leq r _ {0} < \dots < r _ {k} \rightarrow + \infty $. Degenerate stationary points have been studied, cf. [3], [4].
Studies have been made on the case where the phase $ S = S( x, \alpha ) $ depends on a real parameter $ \alpha $, and for small $ | \alpha | $ has two close non-degenerate stationary points. In this case, the asymptotics of the integral $ F( \lambda , \alpha ) $ can be expressed in terms of Airy functions (see [5], [10]). The method of the stationary phase has an operator variant: $ \lambda = A $, where $ A $ is the infinitesimal operator of the strongly-continuous group $ \{ e ^ {itA} \} $ of operators bounded on the axis $ - \infty < t < \infty $, acting on a Banach space $ B $, and $ f( x) $, $ S( x) $ are smooth functions with values in $ B $[9]. If the functions are analytic, then the method of the stationary phase is a particular case of the saddle point method.
References
[1] | W. Thomson, Philos. Mag. , 23 (1887) pp. 252–255 |
[2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) MR0081379 MR0078494 Zbl 0072.11703 Zbl 0070.29002 |
[3] | E.Ya. Rieksteyn'sh, "Asymptotic expansions of integrals" , 1–2 , Riga (1974–1977) (In Russian) |
[4] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) MR0435697 Zbl 0308.41023 Zbl 0303.41035 |
[5] | M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian) |
[6] | M.F. Atiyah, "Resolution of singularities and division of distributions" Comm. Pure Appl. Math. , 23 : 2 (1970) pp. 145–150 MR0256156 Zbl 0188.19405 |
[7] | V.I. Arnol'd, "Remarks on the stationary phase method and Coxeter numbers" Russian Math. Surveys , 28 : 5 (1973) pp. 19–48 Uspekhi Mat. Nauk , 28 : 5 (1973) pp. 17–44 Zbl 0291.40005 |
[8] | A.N. Varchenko, "Newton polyhedra and estimation of oscillating integrals" Funct. Anal. Appl , 10 : 3 (1976) pp. 175–196 Funktsional. Anal. i Prilozhen. , 10 : 3 (1976) pp. 13–38 Zbl 0351.32011 |
[9] | V.P. Maslov, M.V. Fedoryuk, "Semi-classical approximation in quantum mechanics" , Reidel (1981) (Translated from Russian) Zbl 0458.58001 |
[10] | M.V. Fedoryuk, "Asymptotics. Integrals and series" , Moscow (1987) (In Russian) MR0950167 Zbl 0641.41001 |
Comments
An integral of the form (*) is a special case of a so-called oscillatory integral, or Fourier integral operator, cf. also [a2].
References
[a1] | R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989) MR1016818 Zbl 0679.41001 |
[a2] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1 , Springer (1983) pp. §7.7 MR0717035 MR0705278 Zbl 0521.35002 Zbl 0521.35001 |
Stationary phase, method of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stationary_phase,_method_of_the&oldid=24568