Namespaces
Variants
Actions

Difference between revisions of "Dual basis"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing dots)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
''to a basis  $  \{ e _ {1} \dots e _ {n} \} $
+
''to a basis  $  \{ e _ {1}, \dots, e _ {n} \} $ of a module  $  E $ with respect to a form  $  f $''
of a module  $  E $
 
with respect to a form  $  f $''
 
  
A basis  $  \{ c _ {1} \dots c _ {n} \} $
+
A basis  $  \{ c _ {1}, \dots, c _ {n} \} $
 
of  $  E $
 
of  $  E $
 
such that
 
such that
Line 28: Line 26:
  
 
where  $  E $
 
where  $  E $
is a free  $  K $-
+
is a free  $  K $-module over a commutative ring  $  K $
module over a commutative ring  $  K $
 
 
with a unit element, and  $  f $
 
with a unit element, and  $  f $
 
is a non-degenerate (non-singular) bilinear form on  $  E $.
 
is a non-degenerate (non-singular) bilinear form on  $  E $.
Line 35: Line 32:
 
Let  $  E  ^ {*} $
 
Let  $  E  ^ {*} $
 
be the dual module of  $  E $,  
 
be the dual module of  $  E $,  
and let  $  \{ e _ {1}  ^ {*} \dots e _ {n}  ^ {*} \} $
+
and let  $  \{ e _ {1}  ^ {*}, \dots, e _ {n}  ^ {*} \} $
 
be the basis of  $  E  ^ {*} $
 
be the basis of  $  E  ^ {*} $
 
dual to the initial basis of  $  E $:  
 
dual to the initial basis of  $  E $:  
Line 53: Line 50:
 
If the form  $  f $
 
If the form  $  f $
 
is non-singular,  $  \phi _ {f} , \psi _ {f} $
 
is non-singular,  $  \phi _ {f} , \psi _ {f} $
are isomorphisms, and vice versa. Here the basis  $  \{ c _ {1} \dots c _ {n} \} $
+
are isomorphisms, and vice versa. Here the basis  $  \{ c _ {1}, \dots, c _ {n} \} $
dual to  $  \{ e _ {1} \dots e _ {n} \} $
+
dual to  $  \{ e _ {1}, \dots, e _ {n} \} $
 
is distinguished by the following property:
 
is distinguished by the following property:
  
 
$$  
 
$$  
 
\psi _ {f} ( c _ {i} )  =  e _ {i}  ^ {*} \ \  
 
\psi _ {f} ( c _ {i} )  =  e _ {i}  ^ {*} \ \  
( i = 1 \dots n) .
+
( i = 1, \dots, n) .
 
$$
 
$$
  

Latest revision as of 19:52, 1 February 2022


to a basis $ \{ e _ {1}, \dots, e _ {n} \} $ of a module $ E $ with respect to a form $ f $

A basis $ \{ c _ {1}, \dots, c _ {n} \} $ of $ E $ such that

$$ f ( e _ {i} , c _ {i} ) = 1 ,\ f ( e _ {i} , c _ {j} ) = 0 , $$

$$ i \neq j ,\ 1 \leq i , j \leq n , $$

where $ E $ is a free $ K $-module over a commutative ring $ K $ with a unit element, and $ f $ is a non-degenerate (non-singular) bilinear form on $ E $.

Let $ E ^ {*} $ be the dual module of $ E $, and let $ \{ e _ {1} ^ {*}, \dots, e _ {n} ^ {*} \} $ be the basis of $ E ^ {*} $ dual to the initial basis of $ E $: $ e _ {i} ^ {*} ( e _ {i} ) = 1 $, $ e _ {i} ^ {*} ( e _ {j} )= 0 $, $ i \neq j $. To each bilinear form $ f $ on $ E $ there correspond mappings $ \phi _ {f} , \psi _ {f} : E \rightarrow E ^ {*} $, defined by the equations

$$ \phi _ {f} ( x) ( y) = f ( x, y) ,\ \ \psi _ {f} ( x) ( y) = f ( y, x) . $$

If the form $ f $ is non-singular, $ \phi _ {f} , \psi _ {f} $ are isomorphisms, and vice versa. Here the basis $ \{ c _ {1}, \dots, c _ {n} \} $ dual to $ \{ e _ {1}, \dots, e _ {n} \} $ is distinguished by the following property:

$$ \psi _ {f} ( c _ {i} ) = e _ {i} ^ {*} \ \ ( i = 1, \dots, n) . $$

Comments

A bilinear form $ f $ on $ E $ is non-degenerate (also called non-singular) if for all $ x \in E $, $ f ( x , y ) = 0 $ for all $ y $ implies $ x = 0 $ and for all $ y \in E $, $ f ( x , y ) = 0 $ for all $ x $ implies $ y = 0 $. Occasionally the terminology conjugate module (conjugate space) is used instead of dual module (dual space).

References

[a1] P.M. Cohn, "Algebra" , 1 , Wiley (1982)
How to Cite This Entry:
Dual basis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dual_basis&oldid=46777
This article was adapted from an original article by E.N. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article