Namespaces
Variants
Actions

Difference between revisions of "Generalized functions, space of"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (fixing dots)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
g0438401.png
 +
$#A+1 = 99 n = 4
 +
$#C+1 = 99 : ~/encyclopedia/old_files/data/G043/G.0403840 Generalized functions, space of,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''distribution space''
 
''distribution space''
  
Line 5: Line 17:
 
===Examples of spaces of test and generalized functions.===
 
===Examples of spaces of test and generalized functions.===
  
 +
1) The spaces  $  S $
 +
and  $  S  ^  \prime  $.
 +
The space  $  S = S ( \mathbf R  ^ {n} ) $
 +
of (rapidly-decreasing) test functions consists of the  $  C  ^  \infty  ( \mathbf R  ^ {n} ) $-functions that together with all their derivatives decrease at infinity faster than any power of  $  | x |  ^ {- 1} $.
 +
This space is the projective limit of the sequence of Banach spaces  $  S _ {p} $,
 +
$  p = 0, 1, \dots $
 +
consisting of the  $  C  ^ {p} ( \mathbf R  ^ {n} ) $-functions with norm
  
1) The spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438401.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438402.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438404.png" /> of (rapidly-decreasing) test functions consists of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438405.png" />-functions that together with all their derivatives decrease at infinity faster than any power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438406.png" />. This space is the projective limit of the sequence of Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438407.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438408.png" /> consisting of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g0438409.png" />-functions with norm
+
$$
 +
\phi  \rightarrow  \| \phi \| _ {p}  = \
 +
\sup  _ {\begin{array}{c}
 +
| \alpha | \leq  p \\
 +
x
 +
\end{array}
 +
} \
 +
( 1 + | x |  ^ {2} ) ^ {p/2}
 +
| D  ^  \alpha  \phi ( x) | ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384010.png" /></td> </tr></table>
+
and the inclusion  $  S _ {p+1} \subset  S _ {p} $
 +
is compact; $  S $
 +
is of type FS. The dual space  $  S  ^  \prime  = S  ^  \prime  ( \mathbf R  ^ {n} ) $ (the space of generalized functions of slow growth) is the inductive limit of the sequence of Banach spaces  $  S _ {p}  ^  \prime  $,
 +
where the imbedding  $  S _ {p}  ^  \prime  \subset  S _ {p+1}  ^  \prime  $
 +
is compact, so that  $  S  ^  \prime  $
 +
is of type DFS. If a sequence of generalized functions is (weakly) convergent in  $  S  ^  \prime  $,
 +
then it converges with respect to the norm of functionals in some  $  S _ {p}  ^  \prime  $.  
 +
The Fourier transformation is an isomorphism on the spaces  $  S $
 +
and  $  S  ^  \prime  $.
  
and the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384011.png" /> is compact; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384012.png" /> is of type FS. The dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384014.png" /> (the space of generalized functions of slow growth) is the inductive limit of the sequence of Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384015.png" />, where the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384016.png" /> is compact, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384017.png" /> is of type DFS. If a sequence of generalized functions is (weakly) convergent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384018.png" />, then it converges with respect to the norm of functionals in some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384019.png" />. The Fourier transformation is an isomorphism on the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384021.png" />.
+
2) The spaces  $  D ( O) $
 +
and $  D  ^  \prime  ( O) $ ($  O $
 +
an open set in  $  \mathbf R  ^ {n} $).  
 +
The space of test functions consists of the  $  C  ^  \infty  ( O) $-functions that have compact support in  $  O $ (see [[Support of a generalized function|Support of a generalized function]]). It is endowed with the topology of the strong inductive limit of the (increasing) sequence of spaces $  C _ {0}  ^  \infty  ( \overline{O} _ {k} ) , $
 +
$  k = 1 , 2, \dots $
 +
of type FS, where $  \{ O _ {k} \} $
 +
is a strictly-increasing sequence of open sets that exhausts  $  O $,
 +
$  O _ {k} \subset  \subset  O _ {k+1} $,
 +
$  \overline{O} _ {k} $
 +
compact, $  \cup _ {k} O _ {k} = O $.
 +
The space  $  C _ {0}  ^  \infty  ( \overline{O} _ {k} ) $
 +
is the projective limit of the (decreasing) sequence of Banach spaces  $  C _ {0}  ^ {p} ( \overline{O} _ {k} ) $,
 +
$  p = 0 , 1, \dots $
 +
consisting of the  $  C  ^ {p} ( \mathbf R  ^ {n} ) $
 +
functions with support in $  \overline{O} _ {k} $
 +
and with norm
  
2) The spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384025.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384026.png" /> an open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384027.png" />). The space of test functions consists of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384028.png" />-functions that have compact support in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384029.png" /> (see [[Support of a generalized function|Support of a generalized function]]). It is endowed with the topology of the strong inductive limit of the (increasing) sequence of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384030.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384031.png" /> of type FS, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384032.png" /> is a strictly-increasing sequence of open sets that exhausts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384035.png" /> compact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384036.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384037.png" /> is the projective limit of the (decreasing) sequence of Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384039.png" /> consisting of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384040.png" /> functions with support in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384041.png" /> and with norm
+
$$
 +
\phi  \rightarrow  \| \phi \| _ {p}  ^  \prime  = \
 +
\max _ {\begin{array}{c}
 +
| \alpha | \leq  p \\
 +
x
 +
\end{array}
 +
} \
 +
| D  ^  \alpha  \phi ( x) | ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384042.png" /></td> </tr></table>
+
where the imbedding  $  C _ {0}  ^ {p+1} ( \overline{O} _ {k} ) \subset  C _ {0}  ^ {p} ( \overline{O} _ {k} ) $
 +
is compact. Let  $  D  ^  \prime  ( O) $
 +
be the space (strongly) dual to  $  D ( O) $;  
 +
$  D = D ( \mathbf R  ^ {n} ) $
 +
and  $  D  ^  \prime  = D  ^  \prime  ( \mathbf R  ^ {n} ) $.
 +
A sequence of test functions in  $  D ( O) $
 +
converges in  $  D ( O) $
 +
if it converges in some space  $  C _ {0}  ^  \infty  ( \overline{O} _ {k} ) $.  
 +
A sequence of generalized functions in  $  D  ^  \prime  ( O) $
 +
converges in  $  D  ^  \prime  ( O) $
 +
if it converges on every element of  $  D ( O) $ (weak convergence). For a linear functional  $  f $
 +
on  $  D ( O) $
 +
to be a generalized function in  $  D  ^  \prime  ( O) $
 +
it is necessary and sufficient that for any open set  $  O  ^  \prime  \subset  \subset  O $
 +
there exist numbers  $  K $
 +
and  $  m $
 +
such that
  
where the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384043.png" /> is compact. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384044.png" /> be the space (strongly) dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384045.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384047.png" />. A sequence of test functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384048.png" /> converges in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384049.png" /> if it converges in some space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384050.png" />. A sequence of generalized functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384051.png" /> converges in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384052.png" /> if it converges on every element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384053.png" /> (weak convergence). For a linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384054.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384055.png" /> to be a generalized function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384056.png" /> it is necessary and sufficient that for any open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384057.png" /> there exist numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384059.png" /> such that
+
$$
 +
| ( f , \phi ) |  \leq  \
 +
K  \| \phi \| _ {m}  ^  \prime  ,\ \
 +
\phi \in D ( O  ^  \prime  ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384060.png" /></td> </tr></table>
+
The space  $  D  ^  \prime  ( O) $
 +
is (weakly) complete: If a sequence of generalized functions  $  f _ {k} \in D  ^  \prime  ( O) $,
 +
$  k = 1 , 2, \dots $
 +
is such that for any  $  \phi $
 +
in  $  D ( O) $
 +
the sequence of numbers  $  ( f _ {k} , \phi ) $
 +
converges, then the functional
  
The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384061.png" /> is (weakly) complete: If a sequence of generalized functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384063.png" /> is such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384064.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384065.png" /> the sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384066.png" /> converges, then the functional
+
$$
 +
( f , \phi ) = \
 +
\lim\limits _ {k \rightarrow \infty } \
 +
( f _ {k} , \phi )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384067.png" /></td> </tr></table>
+
belongs to  $  D  ^  \prime  ( O) $.
 +
A generalized function in  $  D  ^  \prime  ( O) $
 +
has unrestricted  "growth" in a neighbourhood of the boundary  $  \partial  O $;  
 +
in particular, any function  $  f \in L _ { \mathop{\rm loc}  }  ^ {1} ( O) $
 +
determines a generalized function in  $  D  ^  \prime  ( O) $
 +
by the formula
  
belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384068.png" />. A generalized function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384069.png" /> has unrestricted "growth" in a neighbourhood of the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384070.png" />; in particular, any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384071.png" /> determines a generalized function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384072.png" /> by the formula
+
$$
 +
\phi  \rightarrow ( f , \phi ) = \
 +
\int\limits f ( x) \phi ( x)  d x ,\ \
 +
\phi \in D ( O) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384073.png" /></td> </tr></table>
+
3) The spaces  $  \Phi $
 +
and  $  \Phi  ^  \prime  $.
 +
Let  $  \Phi _ {p} $
 +
be the Banach space of all functions  $  \phi ( z) $,
 +
$  z = x + i y $,
 +
that are holomorphic in the tubular neighbourhood  $  | y | < \rho $,
 +
$  x \in \mathbf R  ^ {n} $,
 +
with norm
  
3) The spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384075.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384076.png" /> be the Banach space of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384078.png" />, that are holomorphic in the tubular neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384080.png" />, with norm
+
$$
 +
\phi  \rightarrow  \| \phi \| _  \rho  ^ {\prime\prime}  = \
 +
\sup _ {\begin{array}{c}
 +
| y| < \rho , \\
 +
x \in \mathbf R  ^ {n}
 +
\end{array}
 +
} \
 +
e ^ {\rho | x| } | \phi ( x + i y ) | ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384081.png" /></td> </tr></table>
+
the imbedding $  \Phi _  \rho  \subset  \Phi _ {\rho  ^  \prime  } $,  
 
+
$  \rho > \rho  ^  \prime  $,  
the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384082.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384083.png" />, is compact. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384084.png" /> be the inductive limit of the (increasing) sequence of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384086.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384087.png" /> is of type DFS, and its dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384088.png" /> is of type FS. The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384089.png" /> are Fourier hyperfunctions; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384090.png" /> is also isomorphic to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384091.png" />.
+
is compact. Let $  \Phi $
 +
be the inductive limit of the (increasing) sequence of spaces $  \Phi _ {1/n} $,  
 +
$  n \rightarrow \infty $.  
 +
The space $  \Phi $
 +
is of type DFS, and its dual $  \Phi  ^  \prime  $
 +
is of type FS. The elements of $  \Phi $
 +
are Fourier hyperfunctions; $  \Phi  ^  \prime  $
 +
is also isomorphic to the space $  S _ {1}  ^ {1} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Schwartz,  "Théorie des distributions" , '''1–2''' , Hermann  (1950–1951)  {{MR|2067351}} {{MR|0209834}} {{MR|0117544}} {{MR|0107812}} {{MR|0041345}} {{MR|0035918}} {{MR|0032815}} {{MR|0031106}} {{MR|0025615}} {{ZBL|0962.46025}} {{ZBL|0653.46037}} {{ZBL|0399.46028}} {{ZBL|0149.09501}} {{ZBL|0085.09703}} {{ZBL|0089.09801}} {{ZBL|0089.09601}} {{ZBL|0078.11003}} {{ZBL|0042.11405}} {{ZBL|0037.07301}} {{ZBL|0039.33201}} {{ZBL|0030.12601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Topological vector spaces" , Addison-Wesley  (1977)  (Translated from French)  {{MR|0583191}} {{ZBL|1106.46003}} {{ZBL|1115.46002}} {{ZBL|0622.46001}} {{ZBL|0482.46001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Dieudonné,  L. Schwartz,  "La dualité dans les espaces (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384092.png" />) et (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384093.png" />)"  ''Ann. Inst. Fourier'' , '''1'''  (1949)  pp. 61–101  {{MR|38553}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Grothendieck,  "Sur les espaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384094.png" /> et <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384095.png" />"  ''Summa Brasil. Math.'' , '''3''' :  6  (1954)  pp. 57–123  {{MR|75542}} {{ZBL|0058.09803}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  I.M. Gel'fand,  G.E. Shilov,  "Generalized functions" , '''2''' , Acad. Press  (1968)  (Translated from Russian)  {{MR|435832}} {{ZBL|0159.18301}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Yoshinaga,  "On a locally convex space introduced by J.S.E. Silva"  ''J. Sci. Hiroshima Univ. Ser. A'' , '''21'''  (1957)  pp. 89–98  {{MR|0097702}} {{ZBL|0080.31303}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  T. Kawai,  "On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients"  ''J. Fac. Sci. Univ. Tokyo Sect. 1A Math.''  (1970)  pp. 467–517  {{MR|0298200}} {{ZBL|0212.46101}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.S. Vladimirov,  "Generalized functions in mathematical physics" , MIR  (1979)  (Translated from Russian)  {{MR|0564116}} {{MR|0549767}} {{ZBL|0515.46034}} {{ZBL|0515.46033}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Schwartz,  "Théorie des distributions" , '''1–2''' , Hermann  (1950–1951)  {{MR|2067351}} {{MR|0209834}} {{MR|0117544}} {{MR|0107812}} {{MR|0041345}} {{MR|0035918}} {{MR|0032815}} {{MR|0031106}} {{MR|0025615}} {{ZBL|0962.46025}} {{ZBL|0653.46037}} {{ZBL|0399.46028}} {{ZBL|0149.09501}} {{ZBL|0085.09703}} {{ZBL|0089.09801}} {{ZBL|0089.09601}} {{ZBL|0078.11003}} {{ZBL|0042.11405}} {{ZBL|0037.07301}} {{ZBL|0039.33201}} {{ZBL|0030.12601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Topological vector spaces" , Addison-Wesley  (1977)  (Translated from French)  {{MR|0583191}} {{ZBL|1106.46003}} {{ZBL|1115.46002}} {{ZBL|0622.46001}} {{ZBL|0482.46001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Dieudonné,  L. Schwartz,  "La dualité dans les espaces (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384092.png" />) et (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384093.png" />)"  ''Ann. Inst. Fourier'' , '''1'''  (1949)  pp. 61–101  {{MR|38553}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A. Grothendieck,  "Sur les espaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384094.png" /> et <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384095.png" />"  ''Summa Brasil. Math.'' , '''3''' :  6  (1954)  pp. 57–123  {{MR|75542}} {{ZBL|0058.09803}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  I.M. Gel'fand,  G.E. Shilov,  "Generalized functions" , '''2''' , Acad. Press  (1968)  (Translated from Russian)  {{MR|435832}} {{ZBL|0159.18301}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  K. Yoshinaga,  "On a locally convex space introduced by J.S.E. Silva"  ''J. Sci. Hiroshima Univ. Ser. A'' , '''21'''  (1957)  pp. 89–98  {{MR|0097702}} {{ZBL|0080.31303}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  T. Kawai,  "On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients"  ''J. Fac. Sci. Univ. Tokyo Sect. 1A Math.''  (1970)  pp. 467–517  {{MR|0298200}} {{ZBL|0212.46101}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.S. Vladimirov,  "Generalized functions in mathematical physics" , MIR  (1979)  (Translated from Russian)  {{MR|0564116}} {{MR|0549767}} {{ZBL|0515.46034}} {{ZBL|0515.46033}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Line 44: Line 162:
 
For generalized function spaces which are invariant under certain given integral transformations see [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]].
 
For generalized function spaces which are invariant under certain given integral transformations see [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]].
  
Test spaces and spaces of generalized functions which satisfy such invariance requirements can be constructed starting from a separable [[Hilbert space|Hilbert space]] and an unbounded [[Self-adjoint operator|self-adjoint operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384096.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384097.png" />. The test space (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384098.png" /> analyticity space) is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g04384099.png" />. The distribution space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840100.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840101.png" /> trajectory space) consists of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840102.png" /> with the property: for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840103.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840104.png" />. The duality pairing is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840105.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840106.png" /> is sufficiently small and depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043840/g043840107.png" />.
+
Test spaces and spaces of generalized functions which satisfy such invariance requirements can be constructed starting from a separable [[Hilbert space|Hilbert space]] and an unbounded [[Self-adjoint operator|self-adjoint operator]] $  A $
 +
on $  X $.  
 +
The test space ( = analyticity space) is defined by $  S _ {X,A} = \cup _ {t > 0 }  e  ^ {-tA} ( X) $.  
 +
The distribution space $  T _ {X,A} $ (= trajectory space) consists of mappings $  F : ( 0 , \infty ) \rightarrow X $
 +
with the property: for all $  t , \tau > 0 $:  
 +
$  F ( t + \tau ) = e  ^ {-tA} F ( \tau ) $.  
 +
The duality pairing is $  \langle  F , \phi \rangle = ( F ( \epsilon ) , e ^ {\epsilon A } \phi ) _ {X} $,  
 +
where $  \epsilon $
 +
is sufficiently small and depends on $  \phi \in S _ {X,A} $.
  
 
Both spaces are inductive and projective limits of Hilbert spaces. Many Gel'fand–Shilov spaces are of this type.
 
Both spaces are inductive and projective limits of Hilbert spaces. Many Gel'fand–Shilov spaces are of this type.

Latest revision as of 17:37, 1 February 2022


distribution space

The space dual to the space of test (sufficiently good) functions. The Fréchet–Schwartz spaces (cf. Fréchet space) (type FS) and the spaces strongly dual to them (type DFS) play an important role here. A space of type FS is the projective limit of a directed set of Banach spaces and its dual is a space of type DFS. A space of type DFS is the inductive limit of a directed set of Banach spaces and its dual is a space of type FS. Spaces of types FS and DFS are complete, separable, reflexive, and Montel. In spaces of types FS and DFS weak and strong convergence coincide.

Examples of spaces of test and generalized functions.

1) The spaces $ S $ and $ S ^ \prime $. The space $ S = S ( \mathbf R ^ {n} ) $ of (rapidly-decreasing) test functions consists of the $ C ^ \infty ( \mathbf R ^ {n} ) $-functions that together with all their derivatives decrease at infinity faster than any power of $ | x | ^ {- 1} $. This space is the projective limit of the sequence of Banach spaces $ S _ {p} $, $ p = 0, 1, \dots $ consisting of the $ C ^ {p} ( \mathbf R ^ {n} ) $-functions with norm

$$ \phi \rightarrow \| \phi \| _ {p} = \ \sup _ {\begin{array}{c} | \alpha | \leq p \\ x \end{array} } \ ( 1 + | x | ^ {2} ) ^ {p/2} | D ^ \alpha \phi ( x) | , $$

and the inclusion $ S _ {p+1} \subset S _ {p} $ is compact; $ S $ is of type FS. The dual space $ S ^ \prime = S ^ \prime ( \mathbf R ^ {n} ) $ (the space of generalized functions of slow growth) is the inductive limit of the sequence of Banach spaces $ S _ {p} ^ \prime $, where the imbedding $ S _ {p} ^ \prime \subset S _ {p+1} ^ \prime $ is compact, so that $ S ^ \prime $ is of type DFS. If a sequence of generalized functions is (weakly) convergent in $ S ^ \prime $, then it converges with respect to the norm of functionals in some $ S _ {p} ^ \prime $. The Fourier transformation is an isomorphism on the spaces $ S $ and $ S ^ \prime $.

2) The spaces $ D ( O) $ and $ D ^ \prime ( O) $ ($ O $ an open set in $ \mathbf R ^ {n} $). The space of test functions consists of the $ C ^ \infty ( O) $-functions that have compact support in $ O $ (see Support of a generalized function). It is endowed with the topology of the strong inductive limit of the (increasing) sequence of spaces $ C _ {0} ^ \infty ( \overline{O} _ {k} ) , $ $ k = 1 , 2, \dots $ of type FS, where $ \{ O _ {k} \} $ is a strictly-increasing sequence of open sets that exhausts $ O $, $ O _ {k} \subset \subset O _ {k+1} $, $ \overline{O} _ {k} $ compact, $ \cup _ {k} O _ {k} = O $. The space $ C _ {0} ^ \infty ( \overline{O} _ {k} ) $ is the projective limit of the (decreasing) sequence of Banach spaces $ C _ {0} ^ {p} ( \overline{O} _ {k} ) $, $ p = 0 , 1, \dots $ consisting of the $ C ^ {p} ( \mathbf R ^ {n} ) $ functions with support in $ \overline{O} _ {k} $ and with norm

$$ \phi \rightarrow \| \phi \| _ {p} ^ \prime = \ \max _ {\begin{array}{c} | \alpha | \leq p \\ x \end{array} } \ | D ^ \alpha \phi ( x) | , $$

where the imbedding $ C _ {0} ^ {p+1} ( \overline{O} _ {k} ) \subset C _ {0} ^ {p} ( \overline{O} _ {k} ) $ is compact. Let $ D ^ \prime ( O) $ be the space (strongly) dual to $ D ( O) $; $ D = D ( \mathbf R ^ {n} ) $ and $ D ^ \prime = D ^ \prime ( \mathbf R ^ {n} ) $. A sequence of test functions in $ D ( O) $ converges in $ D ( O) $ if it converges in some space $ C _ {0} ^ \infty ( \overline{O} _ {k} ) $. A sequence of generalized functions in $ D ^ \prime ( O) $ converges in $ D ^ \prime ( O) $ if it converges on every element of $ D ( O) $ (weak convergence). For a linear functional $ f $ on $ D ( O) $ to be a generalized function in $ D ^ \prime ( O) $ it is necessary and sufficient that for any open set $ O ^ \prime \subset \subset O $ there exist numbers $ K $ and $ m $ such that

$$ | ( f , \phi ) | \leq \ K \| \phi \| _ {m} ^ \prime ,\ \ \phi \in D ( O ^ \prime ) . $$

The space $ D ^ \prime ( O) $ is (weakly) complete: If a sequence of generalized functions $ f _ {k} \in D ^ \prime ( O) $, $ k = 1 , 2, \dots $ is such that for any $ \phi $ in $ D ( O) $ the sequence of numbers $ ( f _ {k} , \phi ) $ converges, then the functional

$$ ( f , \phi ) = \ \lim\limits _ {k \rightarrow \infty } \ ( f _ {k} , \phi ) $$

belongs to $ D ^ \prime ( O) $. A generalized function in $ D ^ \prime ( O) $ has unrestricted "growth" in a neighbourhood of the boundary $ \partial O $; in particular, any function $ f \in L _ { \mathop{\rm loc} } ^ {1} ( O) $ determines a generalized function in $ D ^ \prime ( O) $ by the formula

$$ \phi \rightarrow ( f , \phi ) = \ \int\limits f ( x) \phi ( x) d x ,\ \ \phi \in D ( O) . $$

3) The spaces $ \Phi $ and $ \Phi ^ \prime $. Let $ \Phi _ {p} $ be the Banach space of all functions $ \phi ( z) $, $ z = x + i y $, that are holomorphic in the tubular neighbourhood $ | y | < \rho $, $ x \in \mathbf R ^ {n} $, with norm

$$ \phi \rightarrow \| \phi \| _ \rho ^ {\prime\prime} = \ \sup _ {\begin{array}{c} | y| < \rho , \\ x \in \mathbf R ^ {n} \end{array} } \ e ^ {\rho | x| } | \phi ( x + i y ) | ; $$

the imbedding $ \Phi _ \rho \subset \Phi _ {\rho ^ \prime } $, $ \rho > \rho ^ \prime $, is compact. Let $ \Phi $ be the inductive limit of the (increasing) sequence of spaces $ \Phi _ {1/n} $, $ n \rightarrow \infty $. The space $ \Phi $ is of type DFS, and its dual $ \Phi ^ \prime $ is of type FS. The elements of $ \Phi $ are Fourier hyperfunctions; $ \Phi ^ \prime $ is also isomorphic to the space $ S _ {1} ^ {1} $.

References

[1] L. Schwartz, "Théorie des distributions" , 1–2 , Hermann (1950–1951) MR2067351 MR0209834 MR0117544 MR0107812 MR0041345 MR0035918 MR0032815 MR0031106 MR0025615 Zbl 0962.46025 Zbl 0653.46037 Zbl 0399.46028 Zbl 0149.09501 Zbl 0085.09703 Zbl 0089.09801 Zbl 0089.09601 Zbl 0078.11003 Zbl 0042.11405 Zbl 0037.07301 Zbl 0039.33201 Zbl 0030.12601
[2] N. Bourbaki, "Elements of mathematics. Topological vector spaces" , Addison-Wesley (1977) (Translated from French) MR0583191 Zbl 1106.46003 Zbl 1115.46002 Zbl 0622.46001 Zbl 0482.46001
[3] J. Dieudonné, L. Schwartz, "La dualité dans les espaces () et ()" Ann. Inst. Fourier , 1 (1949) pp. 61–101 MR38553
[4] A. Grothendieck, "Sur les espaces et " Summa Brasil. Math. , 3 : 6 (1954) pp. 57–123 MR75542 Zbl 0058.09803
[5] I.M. Gel'fand, G.E. Shilov, "Generalized functions" , 2 , Acad. Press (1968) (Translated from Russian) MR435832 Zbl 0159.18301
[6] K. Yoshinaga, "On a locally convex space introduced by J.S.E. Silva" J. Sci. Hiroshima Univ. Ser. A , 21 (1957) pp. 89–98 MR0097702 Zbl 0080.31303
[7] T. Kawai, "On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients" J. Fac. Sci. Univ. Tokyo Sect. 1A Math. (1970) pp. 467–517 MR0298200 Zbl 0212.46101
[8] V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1979) (Translated from Russian) MR0564116 MR0549767 Zbl 0515.46034 Zbl 0515.46033

Comments

For functional-analytic properties of distribution spaces see [a1].

For generalized function spaces which are invariant under certain given integral transformations see [a2], [a3], [a4].

Test spaces and spaces of generalized functions which satisfy such invariance requirements can be constructed starting from a separable Hilbert space and an unbounded self-adjoint operator $ A $ on $ X $. The test space ( = analyticity space) is defined by $ S _ {X,A} = \cup _ {t > 0 } e ^ {-tA} ( X) $. The distribution space $ T _ {X,A} $ (= trajectory space) consists of mappings $ F : ( 0 , \infty ) \rightarrow X $ with the property: for all $ t , \tau > 0 $: $ F ( t + \tau ) = e ^ {-tA} F ( \tau ) $. The duality pairing is $ \langle F , \phi \rangle = ( F ( \epsilon ) , e ^ {\epsilon A } \phi ) _ {X} $, where $ \epsilon $ is sufficiently small and depends on $ \phi \in S _ {X,A} $.

Both spaces are inductive and projective limits of Hilbert spaces. Many Gel'fand–Shilov spaces are of this type.

For classical examples, topological properties and operator algebras on those spaces see [a3], [a4].

References

[a1] F. Treves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967) MR225131
[a2] A.H. Zemanian, "Generalized integral transformations" , Interscience (1968) MR0423007 Zbl 0181.12701
[a3] N.G. de Bruijn, "A theory of generalized functions with applications to Wigner distribution and Weyl correspondence" Niew Archief for Wiskunde (3) , 21 (1973) pp. 205–280 Zbl 0269.46033
[a4] S.J.L. van Eijndhoven, J. de Graaf, "Trajectory spaces, generalized functions and unbounded operators" , Lect. notes in math. , 1162 , Springer (1985) Zbl 0622.46032
[a5] P. Antosik, J. Mikusiński, R. Sikorski, "Theory of distributions. The sequential approach" , Elsevier (1973) MR0365130 Zbl 0267.46028
[a6] G. Köthe, "Topological vector spaces" , 1 , Springer (1969) MR0248498 MR0178335 Zbl 0179.17001
[a7] J. Horvath, "Topological vector spaces and distributions" , Addison-Wesley (1966) MR0205028 Zbl 0143.15101
[a8] W. Rudin, "Functional analysis" , McGraw-Hill (1974) MR1157815 MR0458106 MR0365062 Zbl 0867.46001 Zbl 0253.46001
How to Cite This Entry:
Generalized functions, space of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generalized_functions,_space_of&oldid=28203
This article was adapted from an original article by V.S. Vladimirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article