Difference between revisions of "Spectral semi-invariant"
(Importing text file) |
m (fixing subscripts) |
||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0864801.png | ||
| + | $#A+1 = 39 n = 0 | ||
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/S086/S.0806480 Spectral semi\AAhinvariant, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''spectral cumulant'' | ''spectral cumulant'' | ||
| − | One of the characteristics of a [[Stationary stochastic process|stationary stochastic process]]. Let < | + | One of the characteristics of a [[Stationary stochastic process|stationary stochastic process]]. Let $ X ( t) $, |
| + | $ - \infty < t < \infty $, | ||
| + | be a real stationary stochastic process for which $ {\mathsf E} | X ( t) | ^ {n} \leq C < \infty $. | ||
| + | The semi-invariants (cf. [[Semi-invariant(2)|Semi-invariant]]) of this process, | ||
| − | + | $$ | |
| + | S ^ {( n)} ( t _ {1} \dots t _ {n} ) = \ | ||
| + | $$ | ||
| − | + | $$ | |
| + | \left . = | ||
| + | \frac{i ^ {- n} \partial ^ {n} }{\partial u _ {1} \dots | ||
| + | \partial u _ {n} } | ||
| + | \mathop{\rm log} {\mathsf E} e ^ {i ( u _ {1} X | ||
| + | ( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) ) | ||
| + | } \right | _ {u _ {1} = \dots = u _ {n} = 0 } , | ||
| + | $$ | ||
are connected with the moments | are connected with the moments | ||
| − | + | $$ | |
| + | M ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ | ||
| + | {\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \} | ||
| + | $$ | ||
by the relations | by the relations | ||
| − | + | $$ | |
| + | S ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = I } | ||
| + | ( - 1 ) ^ {q- 1} | ||
| + | ( q - 1 ) ! \prod _ { p= 1} ^ { q } M ^ {( p)} ( I _ {p} ) , | ||
| + | $$ | ||
| − | + | $$ | |
| + | M ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = | ||
| + | I } \prod _ { p= 1} ^ { q } S ^ {( p)} ( I _ {p} ) , | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| + | I = ( t _ {1}, \dots, t _ {n} ) ,\ \ | ||
| + | I _ {p} = ( t _ {i _ {1} }, \dots, t _ {i _ {p} } ) \subseteq I , | ||
| + | $$ | ||
| − | and the summation is over all partitions of | + | and the summation is over all partitions of $ I $ |
| + | into disjoint subsets $ I _ {p} $. | ||
| + | It is said that $ X ( t) \in \Phi ^ {( n)} $ | ||
| + | if, for all $ 1 \leq k \leq n $, | ||
| + | there is a complex measure of bounded variation $ M ^ {( k)} $ | ||
| + | on $ \mathbf R ^ {k} $ | ||
| + | such that for all $ t _ {1}, \dots, t _ {n} $, | ||
| − | + | $$ | |
| + | M ^ {( k)} ( t _ {1}, \dots, t _ {k} ) = \ | ||
| + | \int\limits _ {\mathbf R ^ {k} } e ^ {i | ||
| + | ( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M ^ {( k)} | ||
| + | ( d \lambda _ {1}, \dots, d \lambda _ {k} ) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t , \lambda ) } M ^ {( k)} ( d \lambda ) . | ||
| + | $$ | ||
| − | A measure | + | A measure $ F ^ { ( n) } $, |
| + | defined on a system of Borel sets, is called a spectral semi-invariant if, for all $ t _ {1}, \dots, t _ {n} $, | ||
| − | + | $$ | |
| + | S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ | ||
| + | \int\limits _ {\mathbf R ^ {n} } | ||
| + | e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) . | ||
| + | $$ | ||
| − | The measure | + | The measure $ F ^ { ( n) } $ |
| + | exists and has bounded variation if $ X ( t) \in \Phi ^ {( n)} $. | ||
| + | In the case of a stationary process $ X ( t) $, | ||
| + | the semi-invariants $ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) $ | ||
| + | are invariant under translation: | ||
| − | + | $$ | |
| + | S ^ {( n)} ( t _ {1} + \tau, \dots, t _ {n} + | ||
| + | \tau ) = S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) , | ||
| + | $$ | ||
| − | and the spectral measures | + | and the spectral measures $ F ^ { ( n) } $ |
| + | and $ M ^ {( n)} $ | ||
| + | are concentrated on the manifold $ \lambda _ {1} + \dots + \lambda _ {n} = 0 $. | ||
| + | If the measure $ F ^ { ( n) } $ | ||
| + | is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a [[Spectral density|spectral density]] $ f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) $ | ||
| + | of order $ n $, | ||
| + | defined by the equations | ||
| − | + | $$ | |
| + | S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ | ||
| + | \int\limits _ {\mathbf R ^ {n- 1}} e ^ { | ||
| + | i ( \lambda _ {1} ( t _ {2} - t _ {1} ) + | ||
| + | {} \dots + \lambda _ {n- 1} ( t _ {n} - t _ {1} ) ) } \times | ||
| + | $$ | ||
| − | + | $$ | |
| + | \times | ||
| + | f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) d \lambda , | ||
| + | $$ | ||
| − | for all | + | for all $ t _ {1}, \dots, t _ {n} $. |
| + | In the case of discrete time one must replace $ \mathbf R ^ {( k)} $ | ||
| + | in all formulas above by the $ k $-dimensional cube $ - \pi \leq \lambda _ {i} \leq \pi $, | ||
| + | $ 1 \leq i \leq k $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian)</TD></TR></table> | ||
Latest revision as of 02:08, 21 January 2022
spectral cumulant
One of the characteristics of a stationary stochastic process. Let $ X ( t) $, $ - \infty < t < \infty $, be a real stationary stochastic process for which $ {\mathsf E} | X ( t) | ^ {n} \leq C < \infty $. The semi-invariants (cf. Semi-invariant) of this process,
$$ S ^ {( n)} ( t _ {1} \dots t _ {n} ) = \ $$
$$ \left . = \frac{i ^ {- n} \partial ^ {n} }{\partial u _ {1} \dots \partial u _ {n} } \mathop{\rm log} {\mathsf E} e ^ {i ( u _ {1} X ( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) ) } \right | _ {u _ {1} = \dots = u _ {n} = 0 } , $$
are connected with the moments
$$ M ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ {\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \} $$
by the relations
$$ S ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = I } ( - 1 ) ^ {q- 1} ( q - 1 ) ! \prod _ { p= 1} ^ { q } M ^ {( p)} ( I _ {p} ) , $$
$$ M ^ {( n)} ( I) = \sum _ {\cup _ {p= 1} ^ {q} I _ {p} = I } \prod _ { p= 1} ^ { q } S ^ {( p)} ( I _ {p} ) , $$
where
$$ I = ( t _ {1}, \dots, t _ {n} ) ,\ \ I _ {p} = ( t _ {i _ {1} }, \dots, t _ {i _ {p} } ) \subseteq I , $$
and the summation is over all partitions of $ I $ into disjoint subsets $ I _ {p} $. It is said that $ X ( t) \in \Phi ^ {( n)} $ if, for all $ 1 \leq k \leq n $, there is a complex measure of bounded variation $ M ^ {( k)} $ on $ \mathbf R ^ {k} $ such that for all $ t _ {1}, \dots, t _ {n} $,
$$ M ^ {( k)} ( t _ {1}, \dots, t _ {k} ) = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M ^ {( k)} ( d \lambda _ {1}, \dots, d \lambda _ {k} ) = $$
$$ = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t , \lambda ) } M ^ {( k)} ( d \lambda ) . $$
A measure $ F ^ { ( n) } $, defined on a system of Borel sets, is called a spectral semi-invariant if, for all $ t _ {1}, \dots, t _ {n} $,
$$ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n} } e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) . $$
The measure $ F ^ { ( n) } $ exists and has bounded variation if $ X ( t) \in \Phi ^ {( n)} $. In the case of a stationary process $ X ( t) $, the semi-invariants $ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) $ are invariant under translation:
$$ S ^ {( n)} ( t _ {1} + \tau, \dots, t _ {n} + \tau ) = S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) , $$
and the spectral measures $ F ^ { ( n) } $ and $ M ^ {( n)} $ are concentrated on the manifold $ \lambda _ {1} + \dots + \lambda _ {n} = 0 $. If the measure $ F ^ { ( n) } $ is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a spectral density $ f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) $ of order $ n $, defined by the equations
$$ S ^ {( n)} ( t _ {1}, \dots, t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n- 1}} e ^ { i ( \lambda _ {1} ( t _ {2} - t _ {1} ) + {} \dots + \lambda _ {n- 1} ( t _ {n} - t _ {1} ) ) } \times $$
$$ \times f _ {n} ( \lambda _ {1}, \dots, \lambda _ {n- 1} ) d \lambda , $$
for all $ t _ {1}, \dots, t _ {n} $. In the case of discrete time one must replace $ \mathbf R ^ {( k)} $ in all formulas above by the $ k $-dimensional cube $ - \pi \leq \lambda _ {i} \leq \pi $, $ 1 \leq i \leq k $.
References
| [1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
| [2] | V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian) |
Spectral semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_semi-invariant&oldid=12400