Namespaces
Variants
Actions

Difference between pages "Quasi-symplectic space" and "Quasi-solution"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
m (tex encoded by computer)
 
m (fixing superscripts)
 
Line 1: Line 1:
 
<!--
 
<!--
q0767201.png
+
q0767001.png
$#A+1 = 24 n = 0
+
$#A+1 = 65 n = 0
$#C+1 = 24 : ~/encyclopedia/old_files/data/Q076/Q.0706720 Quasi\AAhsymplectic space
+
$#C+1 = 65 : ~/encyclopedia/old_files/data/Q076/Q.0706700 Quasi\AAhsolution
 
Automatically converted into TeX, above some diagnostics.
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
Please remove this comment and the {{TEX|auto}} line below,
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
A projective space of odd dimension,  $  P _ {2n-} 1 $,  
+
A generalized solution of a certain ill-posed problem that (under sufficiently general conditions) satisfies, in contrast to a proper solution, the condition of being well-posed in the sense of Hadamard.
in which the following null-systems (cf. [[Zero system|Zero system]]) are defined:
 
  
$$  
+
Let  $ X , Y $
u _ {a} = - x ^ {m+} a ; \ \  
+
be metric spaces, let $ A : X \rightarrow Y $
u _ {m+} a = x  ^ {a} ; \ \
+
and let $ M $
u _ {m+} b = u _ {n+} b 0
+
be a subset of $ X $.
 +
A quasi-solution of the equation
 +
 
 +
$$ \tag{1 }
 +
A x y
 
$$
 
$$
  
and
+
on the set  $  M $
 +
for given  $  y $
 +
in  $  Y $
 +
is an element  $  \overline{x}\; $
 +
in  $  M $
 +
that minimizes the residual  $  \rho ( A x , y ) $
 +
for  $  x $
 +
in  $  M $.
 +
If equation (1) has a proper solution  $  x _ {0} $
 +
on  $  M $,
 +
then  $  x _ {0} $
 +
is also quasi-solution.
 +
 
 +
The dependence of the set of quasi-solutions on  $  y $
 +
is conveniently represented as a superposition of two mappings:
  
 
$$  
 
$$  
u _ {n+} b  =  x ^ {m+} b ; \ \
+
\overline{x}\;  =  A ^ {- 1} P y ,
u _ {m+} b - x ^ {n+} b ,
 
 
$$
 
$$
 +
 +
where  $  A  ^ {- 1} $
 +
is the (generally multi-valued) inverse of  $  A $
 +
and  $  P $
 +
is the metric projection operator in  $  Y $
 +
onto the set  $  N = A M $.
 +
This superposition enables one to reduce the study of the properties of quasi-solutions to that of the mappings  $  A  ^ {- 1} $
 +
and  $  P $.
 +
For example, if  $  N $
 +
is a [[Chebyshev set|Chebyshev set]] and  $  A  ^ {- 1} $
 +
is single-valued and continuous on  $  N $,
 +
then the problem of finding a quasi-solution is well-posed. If  $  P $
 +
or  $  A  ^ {- 1} $
 +
is many-valued, then stability of the set  $  K $
 +
can be formulated in terms of  $  \beta $-continuity (continuity of set-valued functions).
 +
 +
$  X $
 +
and  $  Y $
 +
are generally taken to be normed linear spaces, which enables one to obtain more complete and definitive results. Then the problem of finding quasi-solutions is well-posed if  $  Y $
 +
is strictly convex,  $  A $
 +
is a continuous invertible linear operator and  $  M $
 +
is a convex compactum. There are a number of other combinations of conditions that ensure the well-posedness of the problem of finding quasi-solutions, in which some conditions are strengthened while others are weakened (for example,  $  A $
 +
is a closed linear operator but  $  Y $
 +
is a Hilbert space).
 +
 +
There exists a number of methods for determining sets  $  M $
 +
that guarantee an effective determination of quasi-solutions. One of the most widespread methods consists in the following: One considers a third space  $  Z $ (all or some of the spaces  $  X , Y , Z $
 +
may coincide) and a linear operator  $  B :  Z \rightarrow X $
 +
for which  $  B  ^ {- 1} $
 +
is unbounded. One takes for the set  $  M = M _ {r} $
 +
the image of a ball
  
 
$$  
 
$$  
m \leq  b \leq  n - 1 ; 0 \leq   a \leq  m - 1 .
+
M _ {r} = B S _ {r} ; \ \  
 +
S _ {r} = \{ {z \in Z } : {\| z \| \leq  r } \} .
 
$$
 
$$
  
The first null-system takes points in the space to hyperplanes passing through the  $  ( 2 n - 2 m - 1 ) $-
+
In this form the problem of finding a quasi-solution is a mathematical programming problem: To minimize the functional
plane
 
  
 
$$  
 
$$  
x  ^ {a}  =  x  ^ {m+} a 0 ,
+
f ( z) \| A B z - y \|
 
$$
 
$$
  
while the second null-system takes points to points of this same plane.
+
subject to $  \| z \| \leq  r $.
 +
For Hilbert spaces  $  Y $
 +
and  $  Z $
 +
one obtains a [[Quadratic programming|quadratic programming]] problem.
  
The plane $  x ^ {a} = x ^ {m+} a = 0 $
+
In the case of well-posedness of quasi-solutions, of great importance in applications are stability estimates, in which the dependence of \| \overline{x}\; _ {1} - \overline{x}\; _ {2} \| $
is called the [[Absolute|absolute]], and the two null-systems are absolute null-systems of the quasi-symplectic space S _ {P _ {2n-} 1 }   ^ {2m-} 1 $.
+
on \| y _ {1} - y _ {2} \| $
A quasi-symplectic space is a special case of a [[Semi-symplectic space|semi-symplectic space]].
+
is given. If the method for determining the set M $
 
+
is as described above, then stability of a quasi-solution is characterized by the function
Collineations of S _ {P _ {2n-} 1 }  ^ {2m-} 1 $
 
taking the absolute plane to itself have the form
 
  
 
$$  
 
$$  
{}  ^  \prime  x  ^ {k}  =  \sum _  \lambda  U _  \lambda  ^ {k} x  ^  \lambda  ,
+
\Omega ( \tau , r ) =
 
$$
 
$$
  
 
$$  
 
$$  
{} \prime  x ^ {u} = \sum _ \lambda  T _ \lambda  ^ {u} x
+
= \
\lambda  + \sum _ \mu  V _ \mu  ^ {u} x ^ \mu  ,
+
\sup \{ {\| x _ {1} - x _ {2} \| } :
 +
{x _ {i} = B z _ {i} , \| z _ {i} \| \leq r ,
 +
\| A x _ {1} - A x _ {2} \| \leq \tau , i = 1 , 2 } \} .
 
$$
 
$$
 +
 +
The following relation holds:
  
 
$$  
 
$$  
\leq  k , \lambda  \leq  2 m - 2 ,\ 2 m - 1 \leq  \mu , u  \leq  2 n - 1 ,
+
\Omega ( \tau , r ) = \omega ( \tau , 2 r ) ,
 
$$
 
$$
  
and the matrices $ U _ \lambda  ^ {k} $
+
where $  \omega ( \tau , r ) $
and  $  V _  \mu  ^ {u} $
+
is the solution of the extremal problem \omega ( \tau , r ) = \sup \{ {\| B z \| } : {\| z \| \leq r, \| A B z \| \leq \tau } \} $.
are symplectic matrices of orders  $  2 m $
 
and  $  2 n - 2 m $;
 
$  T _  \lambda  ^ {u} $
 
is a rectangular matrix with  $  2 m $
 
columns and  $  2 n - 2 m $
 
rows.
 
 
 
These collineations are called quasi-symplectic transformations of  $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $.
 
They commute with the given null-systems of the space. The quasi-symplectic invariant of two lines is defined by analogy with the symplectic invariant of lines of a symplectic space.
 
 
 
The quasi-symplectic space S _ {P _ {2n-} 1 }   ^ {2m-} 1 $
 
can be obtained from the symplectic space $ S _ {P _ {2n-} 1 } $
 
by limit transition from the absolute of  $  S _ {P _ {2n-} 1 }  $
 
to the absolute of  $  S _ {P _ {2n-} 1 }  ^ {2m-} 1 $.
 
Namely, the first of the null-systems given takes all points of the space into planes passing through the absolute plane, while the second takes all planes into points of this same plane.
 
  
The quasi-symplectic transformations form a group, which is a Lie group.
+
For Hilbert spaces  $  Z $
 +
and  $  Y $
 +
there are expressions for  $  \omega ( \tau , r ) $
 +
in closed form.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow (1969)  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.K. Ivanov,  "On linear problems which are not well-posed"  ''Soviet Math. Dokl.'' , '''4''' :  3  (1962)  pp. 981–983  ''Dokl. Akad. Nauk SSSR'' , '''145''' :  2  (1962)  pp. 270–272</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.K. Ivanov,  "On ill-posed problems"  ''Mat. Sb.'' , '''61''' :  2  (1962)  pp. 211–223  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  O.A. Liskovets,  "Stability of quasi-solutions of equations with a closed operator"  ''Diff. Eq.'' , '''7''' :  9  (1971)  pp. 1300–1303  ''Differentsial. Uravn.'' , '''7''' :  9  (1971)  pp. 1707–1709</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.A. Morozov,  "Linear and nonlinear ill-posed problems"  ''J. Soviet Math.'' , '''4''' :  6  (1975)  pp. 706–755  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''11'''  (1973)  pp. 129–178</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.N. Tikhonov,  V.I. [V.I. Arsenin] Arsenine,  "Solution of ill-posed problems" , Wiley  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  V.I. Krylov,  V.V. Bobkov,  P.I. Monastyrnyi,  "Computing methods of higher mathematics" , '''1–2''' , Minsk (1972–1975)  (In Russian)</TD></TR></table>
  
 
====Comments====
 
====Comments====
 +
Frequently the operator  $  B $
 +
is such that  $  B  ^ {- 1} $
 +
is a differential operator. On a suitable space,  $  B $
 +
is then a compact operator, so that the set  $  M $
 +
is a compactum.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.A. [B.A. Rozenfel'd] Rosenfel'd,  "A history of non-euclidean geometry" , Springer  (1988)  (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Hofmann,  "Regularization for applied inverse and ill-posed problems" , Teubner  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.W. Groetsch,  "The theory of Tikhonov regularization for Fredholm equations of the first kind" , Pitman  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Baumeister,  "Stable solution of inverse problems" , Vieweg  (1987)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.Z. Nashed (ed.) , ''Genealized inverses and applications'' , Acad. Press  (1976)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  V.A. Morozov,  "Methods for solving incorrectly posed problems" , Springer  (1984)  (Translated from Russian)</TD></TR></table>

Revision as of 01:59, 21 January 2022


A generalized solution of a certain ill-posed problem that (under sufficiently general conditions) satisfies, in contrast to a proper solution, the condition of being well-posed in the sense of Hadamard.

Let $ X , Y $ be metric spaces, let $ A : X \rightarrow Y $ and let $ M $ be a subset of $ X $. A quasi-solution of the equation

$$ \tag{1 } A x = y $$

on the set $ M $ for given $ y $ in $ Y $ is an element $ \overline{x}\; $ in $ M $ that minimizes the residual $ \rho ( A x , y ) $ for $ x $ in $ M $. If equation (1) has a proper solution $ x _ {0} $ on $ M $, then $ x _ {0} $ is also quasi-solution.

The dependence of the set of quasi-solutions on $ y $ is conveniently represented as a superposition of two mappings:

$$ \overline{x}\; = A ^ {- 1} P y , $$

where $ A ^ {- 1} $ is the (generally multi-valued) inverse of $ A $ and $ P $ is the metric projection operator in $ Y $ onto the set $ N = A M $. This superposition enables one to reduce the study of the properties of quasi-solutions to that of the mappings $ A ^ {- 1} $ and $ P $. For example, if $ N $ is a Chebyshev set and $ A ^ {- 1} $ is single-valued and continuous on $ N $, then the problem of finding a quasi-solution is well-posed. If $ P $ or $ A ^ {- 1} $ is many-valued, then stability of the set $ K $ can be formulated in terms of $ \beta $-continuity (continuity of set-valued functions).

$ X $ and $ Y $ are generally taken to be normed linear spaces, which enables one to obtain more complete and definitive results. Then the problem of finding quasi-solutions is well-posed if $ Y $ is strictly convex, $ A $ is a continuous invertible linear operator and $ M $ is a convex compactum. There are a number of other combinations of conditions that ensure the well-posedness of the problem of finding quasi-solutions, in which some conditions are strengthened while others are weakened (for example, $ A $ is a closed linear operator but $ Y $ is a Hilbert space).

There exists a number of methods for determining sets $ M $ that guarantee an effective determination of quasi-solutions. One of the most widespread methods consists in the following: One considers a third space $ Z $ (all or some of the spaces $ X , Y , Z $ may coincide) and a linear operator $ B : Z \rightarrow X $ for which $ B ^ {- 1} $ is unbounded. One takes for the set $ M = M _ {r} $ the image of a ball

$$ M _ {r} = B S _ {r} ; \ \ S _ {r} = \{ {z \in Z } : {\| z \| \leq r } \} . $$

In this form the problem of finding a quasi-solution is a mathematical programming problem: To minimize the functional

$$ f ( z) = \| A B z - y \| $$

subject to $ \| z \| \leq r $. For Hilbert spaces $ Y $ and $ Z $ one obtains a quadratic programming problem.

In the case of well-posedness of quasi-solutions, of great importance in applications are stability estimates, in which the dependence of $ \| \overline{x}\; _ {1} - \overline{x}\; _ {2} \| $ on $ \| y _ {1} - y _ {2} \| $ is given. If the method for determining the set $ M $ is as described above, then stability of a quasi-solution is characterized by the function

$$ \Omega ( \tau , r ) = $$

$$ = \ \sup \{ {\| x _ {1} - x _ {2} \| } : {x _ {i} = B z _ {i} , \| z _ {i} \| \leq r , \| A x _ {1} - A x _ {2} \| \leq \tau , i = 1 , 2 } \} . $$

The following relation holds:

$$ \Omega ( \tau , r ) = \omega ( \tau , 2 r ) , $$

where $ \omega ( \tau , r ) $ is the solution of the extremal problem $ \omega ( \tau , r ) = \sup \{ {\| B z \| } : {\| z \| \leq r, \| A B z \| \leq \tau } \} $.

For Hilbert spaces $ Z $ and $ Y $ there are expressions for $ \omega ( \tau , r ) $ in closed form.

References

[1] V.K. Ivanov, "On linear problems which are not well-posed" Soviet Math. Dokl. , 4 : 3 (1962) pp. 981–983 Dokl. Akad. Nauk SSSR , 145 : 2 (1962) pp. 270–272
[2] V.K. Ivanov, "On ill-posed problems" Mat. Sb. , 61 : 2 (1962) pp. 211–223 (In Russian)
[3] O.A. Liskovets, "Stability of quasi-solutions of equations with a closed operator" Diff. Eq. , 7 : 9 (1971) pp. 1300–1303 Differentsial. Uravn. , 7 : 9 (1971) pp. 1707–1709
[4] V.A. Morozov, "Linear and nonlinear ill-posed problems" J. Soviet Math. , 4 : 6 (1975) pp. 706–755 Itogi Nauk. i Tekhn. Mat. Anal. , 11 (1973) pp. 129–178
[5] A.N. Tikhonov, V.I. [V.I. Arsenin] Arsenine, "Solution of ill-posed problems" , Wiley (1977) (Translated from Russian)
[6] V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , 1–2 , Minsk (1972–1975) (In Russian)

Comments

Frequently the operator $ B $ is such that $ B ^ {- 1} $ is a differential operator. On a suitable space, $ B $ is then a compact operator, so that the set $ M $ is a compactum.

References

[a1] B. Hofmann, "Regularization for applied inverse and ill-posed problems" , Teubner (1986)
[a2] C.W. Groetsch, "The theory of Tikhonov regularization for Fredholm equations of the first kind" , Pitman (1984)
[a3] J. Baumeister, "Stable solution of inverse problems" , Vieweg (1987)
[a4] M.Z. Nashed (ed.) , Genealized inverses and applications , Acad. Press (1976)
[a5] V.A. Morozov, "Methods for solving incorrectly posed problems" , Springer (1984) (Translated from Russian)
How to Cite This Entry:
Quasi-symplectic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-symplectic_space&oldid=48395
This article was adapted from an original article by L.A. Sidorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article