Difference between revisions of "Induced fibre bundle"
(Importing text file) |
m (fixing superscripts) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | i0507201.png | ||
+ | $#A+1 = 37 n = 0 | ||
+ | $#C+1 = 37 : ~/encyclopedia/old_files/data/I050/I.0500720 Induced fibre bundle, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''induced fibration'' | ''induced fibration'' | ||
− | The [[Fibration|fibration]] | + | The [[Fibration|fibration]] $ f ^ { * } ( \pi ) : X ^ \prime \rightarrow B ^ \prime $ |
+ | induced by the mapping $ f : B ^ \prime \rightarrow B $ | ||
+ | and the fibration $ \pi : X \rightarrow B $, | ||
+ | where $ X ^ \prime $ | ||
+ | is the subspace of the direct product $ B ^ \prime \times X $ | ||
+ | consisting of the pairs $ ( b ^ \prime , x ) $ | ||
+ | for which $ f ( b ^ \prime ) = \pi ( x) $, | ||
+ | and $ f ^ { * } ( x) $ | ||
+ | is the mapping defined by the projection $ ( b ^ \prime , x ) \rightarrow b ^ \prime $. | ||
+ | The mapping $ F : f ^ { * } ( X) \rightarrow X $ | ||
+ | from the induced fibre bundle into the original fibre bundle defined by the formula $ F ( b ^ \prime , x ) = x $ | ||
+ | is a bundle morphism covering $ f $. | ||
+ | For each point $ b ^ \prime \in B $, | ||
+ | the restrictions | ||
− | + | $$ | |
+ | F _ {b ^ \prime } : \ | ||
+ | ( f ^ { * } ( \pi ) ) ^ {- 1} ( b ^ \prime ) \rightarrow \pi ^ {- 1} ( f ( b ^ \prime ) ) | ||
+ | $$ | ||
− | are homeomorphisms. Furthermore, for any fibration | + | are homeomorphisms. Furthermore, for any fibration $ \eta : Y \rightarrow B ^ \prime $ |
+ | and morphism $ H : \eta \rightarrow \pi $ | ||
+ | covering $ f $ | ||
+ | there exist precisely one $ B ^ \prime $-morphism $ K : \eta \rightarrow f ^ { * } ( \pi ) $ | ||
+ | such that $ F K = H $, | ||
+ | $ f ^ { * } ( \pi ) K= \eta $ | ||
+ | and such that the following diagram is commutative: $ Y $ | ||
+ | $ H $ | ||
+ | $ k $ | ||
+ | $ \eta $ | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i050720a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/i050720a.gif" /> | ||
Line 11: | Line 48: | ||
Figure: i050720a | Figure: i050720a | ||
− | + | $$ | |
+ | |||
+ | \begin{array}{ccl} | ||
+ | f ^ { * } ( X) &\rightarrow ^ { F } & X \\ | ||
+ | size - 3 {f ^ { * } ( \pi ) } \downarrow &{} &\downarrow size - 3 \pi \\ | ||
+ | B ^ \prime &\rightarrow _ { f } & B \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
Fibre bundles induced from isomorphic fibrations are isomorphic, a fibre bundle induced by a constant mapping is isomorphic to the trivial fibre bundle. | Fibre bundles induced from isomorphic fibrations are isomorphic, a fibre bundle induced by a constant mapping is isomorphic to the trivial fibre bundle. | ||
− | For any section of a fibration | + | For any section of a fibration $ \pi $, |
+ | the mapping $ \sigma : B ^ \prime \rightarrow f ^ { * } ( x) $ | ||
+ | defined by the formula $ \sigma ( b ^ \prime ) = ( b ^ \prime , s f ( b ^ \prime ) ) $ | ||
+ | is a section of the induced fibration $ f ^ { * } ( \pi ) $ | ||
+ | and satisfies the relation $ F \sigma = s f $. | ||
+ | For example, the mapping $ \pi : X \rightarrow B $ | ||
+ | induces the fibration $ \pi ^ {2} $ | ||
+ | with space $ \pi ^ {*} ( x) $ | ||
+ | and base $ X $ | ||
+ | that is the square of the fibration $ \pi $ | ||
+ | and has the canonical section $ s ( x) = ( x , x ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> |
Latest revision as of 01:57, 21 January 2022
induced fibration
The fibration $ f ^ { * } ( \pi ) : X ^ \prime \rightarrow B ^ \prime $ induced by the mapping $ f : B ^ \prime \rightarrow B $ and the fibration $ \pi : X \rightarrow B $, where $ X ^ \prime $ is the subspace of the direct product $ B ^ \prime \times X $ consisting of the pairs $ ( b ^ \prime , x ) $ for which $ f ( b ^ \prime ) = \pi ( x) $, and $ f ^ { * } ( x) $ is the mapping defined by the projection $ ( b ^ \prime , x ) \rightarrow b ^ \prime $. The mapping $ F : f ^ { * } ( X) \rightarrow X $ from the induced fibre bundle into the original fibre bundle defined by the formula $ F ( b ^ \prime , x ) = x $ is a bundle morphism covering $ f $. For each point $ b ^ \prime \in B $, the restrictions
$$ F _ {b ^ \prime } : \ ( f ^ { * } ( \pi ) ) ^ {- 1} ( b ^ \prime ) \rightarrow \pi ^ {- 1} ( f ( b ^ \prime ) ) $$
are homeomorphisms. Furthermore, for any fibration $ \eta : Y \rightarrow B ^ \prime $ and morphism $ H : \eta \rightarrow \pi $ covering $ f $ there exist precisely one $ B ^ \prime $-morphism $ K : \eta \rightarrow f ^ { * } ( \pi ) $ such that $ F K = H $, $ f ^ { * } ( \pi ) K= \eta $ and such that the following diagram is commutative: $ Y $ $ H $ $ k $ $ \eta $
Figure: i050720a
$$ \begin{array}{ccl} f ^ { * } ( X) &\rightarrow ^ { F } & X \\ size - 3 {f ^ { * } ( \pi ) } \downarrow &{} &\downarrow size - 3 \pi \\ B ^ \prime &\rightarrow _ { f } & B \\ \end{array} $$
Fibre bundles induced from isomorphic fibrations are isomorphic, a fibre bundle induced by a constant mapping is isomorphic to the trivial fibre bundle.
For any section of a fibration $ \pi $, the mapping $ \sigma : B ^ \prime \rightarrow f ^ { * } ( x) $ defined by the formula $ \sigma ( b ^ \prime ) = ( b ^ \prime , s f ( b ^ \prime ) ) $ is a section of the induced fibration $ f ^ { * } ( \pi ) $ and satisfies the relation $ F \sigma = s f $. For example, the mapping $ \pi : X \rightarrow B $ induces the fibration $ \pi ^ {2} $ with space $ \pi ^ {*} ( x) $ and base $ X $ that is the square of the fibration $ \pi $ and has the canonical section $ s ( x) = ( x , x ) $.
References
[1] | C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969) |
[2] | N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) |
[3] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
Induced fibre bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Induced_fibre_bundle&oldid=12456