Difference between revisions of "Plücker coordinates"
(Importing text file) |
m (fixing spaces) |
||
| (7 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0728901.png | ||
| + | $#A+1 = 61 n = 0 | ||
| + | $#C+1 = 61 : ~/encyclopedia/old_files/data/P072/P.0702890 Pl\AGucker coordinates | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | The | + | The coordinates of a straight line in three-dimensional space, the six numbers $ p _ {01} , p _ {02} , p _ {03} , p _ {23} , p _ {31} $, |
| + | and $ p _ {12} $, | ||
| + | of which the first three are the coordinates of the direction vector $ l $ | ||
| + | for the straight line $ L $ | ||
| + | and the second three are the moments of this vector about the origin. Let the line $ L $ | ||
| + | pass through the points $ X $ | ||
| + | and $ Y $ | ||
| + | with projective coordinates $ ( x _ {0} : \dots : x _ {3} ) $ | ||
| + | and $ ( y _ {0} : \dots : y _ {3} ) $, | ||
| + | respectively; the Plücker coordinates for this line are the numbers | ||
| − | + | $$ | |
| + | p _ {ik} = x _ {i} y _ {k} - x _ {k} y _ {i} . | ||
| + | $$ | ||
| − | + | The Plücker coordinates are used in line geometry. They were first considered by J. Plücker (1869). Sometimes, instead of the Plücker coordinates one uses the Klein coordinates $ ( x _ {0} : \dots : x _ {5} ) $, | |
| + | which are related to the Plücker ones as follows: | ||
| − | + | $$ | |
| + | p _ {01} = x _ {0} + x _ {1} ,\ \ | ||
| + | p _ {02} = x _ {2} + x _ {3} ,\ \ | ||
| + | p _ {03} = x _ {4} + x _ {5} , | ||
| + | $$ | ||
| − | + | $$ | |
| + | p _ {23} = x _ {0} - x _ {1} ,\ p _ {31} = x _ {2} - x _ {3} ,\ p _ {12} = x _ {4} - x _ {5} . | ||
| + | $$ | ||
| − | + | More generally, one naturally considers the Plücker coordinates as coordinates of a $ p $-dimensional vector subspace of an $ n $-dimensional vector space $ V $. | |
| + | Then they are understood as the set of numbers equal to $ ( p \times p) $-subdeterminants of the $ ( n \times p) $-matrix $ A( a _ {1} \dots a _ {p} ) $ | ||
| + | with as columns $ a _ {i} $, | ||
| + | $ 1 \leq i \leq p $, | ||
| + | the coordinate columns (in some basis for $ V $) | ||
| + | of the basis vectors of a subspace $ W $. | ||
| + | If $ a _ {i} ^ {j} $ | ||
| + | are the components of a column $ a _ {i} $, | ||
| + | $ 1 \leq i \leq p $, | ||
| + | then the Plücker coordinates (or Grassmann coordinates) are the numbers | ||
| − | + | $$ | |
| + | u ^ {i _ {1} \dots i _ {p} } = \left | | ||
| − | + | \begin{array}{lll} | |
| + | a _ {1} ^ {i _ {i} } &\cdots &a _ {p} ^ {i _ {1} } \\ | ||
| + | \vdots &\ddots &\vdots \\ | ||
| + | a _ {1} ^ {i _ {p} } &\cdots &a _ {p} ^ {i _ {p} } \\ | ||
| + | \end{array} | ||
| + | \right | = \ | ||
| + | p! a _ {1} ^ {[ i _ {1} } \dots a _ {p} ^ { {} i _ {p} ] } ,\ \ | ||
| + | 1 \leq i _ \nu \leq n. | ||
| + | $$ | ||
| − | + | The Plücker coordinates are anti-symmetric in all indices. The number of significant Plücker coordinates is $ ( {} _ {p} ^ {n} ) $. | |
| − | + | When the basis of $ W $ | |
| + | is changed and the basis for $ V $ | ||
| + | is fixed, the Plücker coordinates are all multiplied by the same non-zero number. When the basis of $ V $ | ||
| + | is changed and the basis for $ W $ | ||
| + | is fixed, the Plücker coordinates transform as the components of a contravariant tensor of valency $ p $ | ||
| + | (see [[Poly-vector|Poly-vector]]). Two subspaces coincide if and only if their Plücker coordinates, calculated in the same basis for $ V $, | ||
| + | differ only by a non-zero factor. | ||
| + | A vector $ x $ | ||
| + | belongs to a subspace $ W $ | ||
| + | if the linear equations | ||
| + | $$ | ||
| + | \sum _ {\alpha = 1 } ^ { p+1 } (- 1) ^ {\alpha - 1 } x ^ {i _ \alpha } u ^ | ||
| + | {i _ {1} \dots i _ {\alpha - 1 } i _ {\alpha + 1 } \dots i _ {p} } = 0, | ||
| + | $$ | ||
| + | |||
| + | with coefficients that are the Plücker coordinates for $ W $, | ||
| + | are fulfilled. In these equations $ i _ {1} < \dots < i _ {p} $ | ||
| + | are all possible sets of numbers $ 1 \dots n $. | ||
====Comments==== | ====Comments==== | ||
Relating the Plücker and Klein coordinates as above, the Plücker identity | Relating the Plücker and Klein coordinates as above, the Plücker identity | ||
| − | + | $$ | |
| + | p _ {01} p _ {23} + p _ {02} p _ {31} + p _ {03} p _ {12} = 0 | ||
| + | $$ | ||
becomes | becomes | ||
| − | + | $$ | |
| + | x _ {0} ^ {2} + x _ {2} ^ {2} + x _ {4} ^ {2} = \ | ||
| + | x _ {1} ^ {2} + x _ {3} ^ {2} + x _ {5} ^ {2} . | ||
| + | $$ | ||
| − | The Plücker coordinates of | + | The Plücker coordinates of $ p $-dimensional subspaces $ W $ |
| + | of an $ n $-dimensional space $ V $ | ||
| + | (over any field) define an imbedding of the Grassmann variety $ G _ {p} ( V) $ | ||
| + | into $ N $-dimensional projective space $ P ^ {N} $ | ||
| + | with $ N = ( {} _ {p} ^ {n} ) - 1 $. | ||
| + | As a subvariety of $ P ^ {N} $, | ||
| + | $ G _ {p} ( V) $ | ||
| + | is given by quadratic relations, the Plücker relations, which look as follows: | ||
| − | + | $$ | |
| + | \sum _ { k=1 } ^ { p } (- 1) ^ {k} u ^ {i _ {1} \dots i _ {p-1} j _ {k} } | ||
| + | u ^ {j _ {1} \dots \widehat{j _ {k} } \dots j _ {p+1} } = 0, | ||
| + | $$ | ||
| − | i.e. take | + | i.e. take $ 2p $ |
| + | indices $ 1 \leq i _ {1} \dots i _ {p-1} $; | ||
| + | $ j _ {1} \dots j _ {p+1} \leq n $ | ||
| + | and write down the relation above, using that $ u ^ {k _ {1} \dots k _ {p} } = 0 $ | ||
| + | if two of the $ k $'s are equal. If $ p = 2 $, | ||
| + | $ n = 4 $, | ||
| + | there is just one relation: $ u ^ {12} u ^ {34} - u ^ {13} u ^ {24} + u ^ {14} u ^ {23} = 0 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1965) pp. 88–90</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B.L. van der Waerden, "Einführung in die algebraische Geometrie" , Springer (1939) pp. Chapt. 1</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1965) pp. 88–90</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B.L. van der Waerden, "Einführung in die algebraische Geometrie" , Springer (1939) pp. Chapt. 1</TD></TR></table> | ||
Latest revision as of 01:23, 21 January 2022
The coordinates of a straight line in three-dimensional space, the six numbers $ p _ {01} , p _ {02} , p _ {03} , p _ {23} , p _ {31} $,
and $ p _ {12} $,
of which the first three are the coordinates of the direction vector $ l $
for the straight line $ L $
and the second three are the moments of this vector about the origin. Let the line $ L $
pass through the points $ X $
and $ Y $
with projective coordinates $ ( x _ {0} : \dots : x _ {3} ) $
and $ ( y _ {0} : \dots : y _ {3} ) $,
respectively; the Plücker coordinates for this line are the numbers
$$ p _ {ik} = x _ {i} y _ {k} - x _ {k} y _ {i} . $$
The Plücker coordinates are used in line geometry. They were first considered by J. Plücker (1869). Sometimes, instead of the Plücker coordinates one uses the Klein coordinates $ ( x _ {0} : \dots : x _ {5} ) $, which are related to the Plücker ones as follows:
$$ p _ {01} = x _ {0} + x _ {1} ,\ \ p _ {02} = x _ {2} + x _ {3} ,\ \ p _ {03} = x _ {4} + x _ {5} , $$
$$ p _ {23} = x _ {0} - x _ {1} ,\ p _ {31} = x _ {2} - x _ {3} ,\ p _ {12} = x _ {4} - x _ {5} . $$
More generally, one naturally considers the Plücker coordinates as coordinates of a $ p $-dimensional vector subspace of an $ n $-dimensional vector space $ V $. Then they are understood as the set of numbers equal to $ ( p \times p) $-subdeterminants of the $ ( n \times p) $-matrix $ A( a _ {1} \dots a _ {p} ) $ with as columns $ a _ {i} $, $ 1 \leq i \leq p $, the coordinate columns (in some basis for $ V $) of the basis vectors of a subspace $ W $. If $ a _ {i} ^ {j} $ are the components of a column $ a _ {i} $, $ 1 \leq i \leq p $, then the Plücker coordinates (or Grassmann coordinates) are the numbers
$$ u ^ {i _ {1} \dots i _ {p} } = \left | \begin{array}{lll} a _ {1} ^ {i _ {i} } &\cdots &a _ {p} ^ {i _ {1} } \\ \vdots &\ddots &\vdots \\ a _ {1} ^ {i _ {p} } &\cdots &a _ {p} ^ {i _ {p} } \\ \end{array} \right | = \ p! a _ {1} ^ {[ i _ {1} } \dots a _ {p} ^ { {} i _ {p} ] } ,\ \ 1 \leq i _ \nu \leq n. $$
The Plücker coordinates are anti-symmetric in all indices. The number of significant Plücker coordinates is $ ( {} _ {p} ^ {n} ) $.
When the basis of $ W $ is changed and the basis for $ V $ is fixed, the Plücker coordinates are all multiplied by the same non-zero number. When the basis of $ V $ is changed and the basis for $ W $ is fixed, the Plücker coordinates transform as the components of a contravariant tensor of valency $ p $ (see Poly-vector). Two subspaces coincide if and only if their Plücker coordinates, calculated in the same basis for $ V $, differ only by a non-zero factor.
A vector $ x $ belongs to a subspace $ W $ if the linear equations
$$ \sum _ {\alpha = 1 } ^ { p+1 } (- 1) ^ {\alpha - 1 } x ^ {i _ \alpha } u ^ {i _ {1} \dots i _ {\alpha - 1 } i _ {\alpha + 1 } \dots i _ {p} } = 0, $$
with coefficients that are the Plücker coordinates for $ W $, are fulfilled. In these equations $ i _ {1} < \dots < i _ {p} $ are all possible sets of numbers $ 1 \dots n $.
Comments
Relating the Plücker and Klein coordinates as above, the Plücker identity
$$ p _ {01} p _ {23} + p _ {02} p _ {31} + p _ {03} p _ {12} = 0 $$
becomes
$$ x _ {0} ^ {2} + x _ {2} ^ {2} + x _ {4} ^ {2} = \ x _ {1} ^ {2} + x _ {3} ^ {2} + x _ {5} ^ {2} . $$
The Plücker coordinates of $ p $-dimensional subspaces $ W $ of an $ n $-dimensional space $ V $ (over any field) define an imbedding of the Grassmann variety $ G _ {p} ( V) $ into $ N $-dimensional projective space $ P ^ {N} $ with $ N = ( {} _ {p} ^ {n} ) - 1 $. As a subvariety of $ P ^ {N} $, $ G _ {p} ( V) $ is given by quadratic relations, the Plücker relations, which look as follows:
$$ \sum _ { k=1 } ^ { p } (- 1) ^ {k} u ^ {i _ {1} \dots i _ {p-1} j _ {k} } u ^ {j _ {1} \dots \widehat{j _ {k} } \dots j _ {p+1} } = 0, $$
i.e. take $ 2p $ indices $ 1 \leq i _ {1} \dots i _ {p-1} $; $ j _ {1} \dots j _ {p+1} \leq n $ and write down the relation above, using that $ u ^ {k _ {1} \dots k _ {p} } = 0 $ if two of the $ k $'s are equal. If $ p = 2 $, $ n = 4 $, there is just one relation: $ u ^ {12} u ^ {34} - u ^ {13} u ^ {24} + u ^ {14} u ^ {23} = 0 $.
References
| [a1] | H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1965) pp. 88–90 |
| [a2] | B.L. van der Waerden, "Einführung in die algebraische Geometrie" , Springer (1939) pp. Chapt. 1 |
Plücker coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pl%C3%BCcker_coordinates&oldid=11592