Namespaces
Variants
Actions

Difference between revisions of "Milne method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing overline)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
m0637801.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/M063/M.0603780 Milne method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A finite-difference method for the solution of the [[Cauchy problem|Cauchy problem]] for systems of first-order ordinary differential equations:
 
A finite-difference method for the solution of the [[Cauchy problem|Cauchy problem]] for systems of first-order ordinary differential equations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637801.png" /></td> </tr></table>
+
$$
 +
y  ^  \prime  = f ( x , y ) ,\ \
 +
y ( a )  = b .
 +
$$
  
 
The method uses the finite-difference formula
 
The method uses the finite-difference formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637802.png" /></td> </tr></table>
+
$$
 +
y _ {i} - y _ {i- 2}  = \
 +
2 h f ( x _ {i- 1} , y _ {i- 1} ) ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637803.png" /></td> </tr></table>
+
$$
 +
x _ {i}  = a + i h ,\ \
 +
i = 0 , 1 ,\dots .
 +
$$
  
In computations using this formula it is necessary, by some other means, to find an additional initial value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637804.png" />. The Milne method has second-order accuracy and is Dahlquist stable, that is, all solutions of the homogeneous difference equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637805.png" /> are bounded uniformly with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637806.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637807.png" />, for any fixed interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637808.png" />. For Dahlquist stability it is sufficient that the simple roots of the characteristic polynomial of the left-hand side of the difference equation do not exceed one in modulus, and that the multiple roots are strictly less than one in modulus. In the case given, the characteristic polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m0637809.png" /> has roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378010.png" /> and, consequently, the stability condition holds. However, in solving a system of equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378011.png" /> with a matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378012.png" /> having negative eigen values, a rapid growth in the calculation error occurs.
+
In computations using this formula it is necessary, by some other means, to find an additional initial value $  y _ {1} \approx y ( x _ {1} ) $.  
 +
The Milne method has second-order accuracy and is Dahlquist stable, that is, all solutions of the homogeneous difference equation $  y _ {i} - y _ {i- 2} = 0 $
 +
are bounded uniformly with respect to $  h $
 +
for $  i = 0, \dots, [ ( A - a ) / h ] $,  
 +
for any fixed interval $  [ a , A ] $.  
 +
For Dahlquist stability it is sufficient that the simple roots of the characteristic polynomial of the left-hand side of the difference equation do not exceed one in modulus, and that the multiple roots are strictly less than one in modulus. In the case given, the characteristic polynomial $  \rho ( \lambda ) = \lambda  ^ {2} - 1 $
 +
has roots $  \lambda = \pm  1 $
 +
and, consequently, the stability condition holds. However, in solving a system of equations $  y  ^  \prime  = A y $
 +
with a matrix $  A $
 +
having negative eigen values, a rapid growth in the calculation error occurs.
  
 
The predictor-corrector Milne method uses a pair of finite-difference formulas:
 
The predictor-corrector Milne method uses a pair of finite-difference formulas:
Line 17: Line 47:
 
a predictor
 
a predictor
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378013.png" /></td> </tr></table>
+
$$
 +
\overline{y} _ {i}  = y _ {i- 4} +
 +
\frac{4h}{3}
 +
 
 +
( 2 f _ {i- 3} + f _ {i- 2} + 2 f _ {i- 1} ) ,\ \
 +
i = 4 , 5 \dots
 +
$$
  
 
and a corrector
 
and a corrector
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378014.png" /></td> </tr></table>
+
$$
 +
\overline{ \overline{y} } _ {i}  = \
 +
y _ {i- 2} +
 +
\frac{h}{3}
 +
 
 +
( f _ {i} + 4 f _ {i- 1} + f _ {i- 2} ) ,\ \
 +
i = 4 , 5 \dots
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378015.png" /></td> </tr></table>
+
$$
 +
f _ {i}  = f ( x _ {i} , y _ {i} ) ,\ \
 +
\overline{f} _ {i}  = f ( x _ {i} , \overline{y} _ {i} ) .
 +
$$
  
 
An approximate expression for the error is given by the quantity
 
An approximate expression for the error is given by the quantity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378016.png" /></td> </tr></table>
+
$$
 +
\epsilon _ {i}  = \
 +
 
 +
\frac{1}{29}
 +
 
 +
( \overline{y} _ {i} - \overline{ {\overline{y} }} _ {i} ) .
 +
$$
  
Additional initial values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063780/m06378018.png" />, are calculated by some other means, for example, by the [[Runge–Kutta method|Runge–Kutta method]], which has fourth-order accuracy. The method was proposed in [[#References|[3]]].
+
Additional initial values $  y _ {i} \approx y ( x _ {j} ) $,
 +
$  j = 1 , 2 , 3 $,  
 +
are calculated by some other means, for example, by the [[Runge–Kutta method|Runge–Kutta method]], which has fourth-order accuracy. The method was proposed in [[#References|[3]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.S. Bakhvalov,  "Numerical methods: analysis, algebra, ordinary differential equations" , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.P. Demidovich,  I.A. Maron,  E.Z. Shuvalova,  "Numerische Methoden der Analysis" , Deutsch. Verlag Wissenschaft.  (1968)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.E. Milne,  "Numerical solution of differential equations" , Dover, reprint  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.S. Bakhvalov,  "Numerical methods: analysis, algebra, ordinary differential equations" , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.P. Demidovich,  I.A. Maron,  E.Z. Shuvalova,  "Numerische Methoden der Analysis" , Deutsch. Verlag Wissenschaft.  (1968)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.E. Milne,  "Numerical solution of differential equations" , Dover, reprint  (1970)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 17:45, 20 January 2022


A finite-difference method for the solution of the Cauchy problem for systems of first-order ordinary differential equations:

$$ y ^ \prime = f ( x , y ) ,\ \ y ( a ) = b . $$

The method uses the finite-difference formula

$$ y _ {i} - y _ {i- 2} = \ 2 h f ( x _ {i- 1} , y _ {i- 1} ) , $$

where

$$ x _ {i} = a + i h ,\ \ i = 0 , 1 ,\dots . $$

In computations using this formula it is necessary, by some other means, to find an additional initial value $ y _ {1} \approx y ( x _ {1} ) $. The Milne method has second-order accuracy and is Dahlquist stable, that is, all solutions of the homogeneous difference equation $ y _ {i} - y _ {i- 2} = 0 $ are bounded uniformly with respect to $ h $ for $ i = 0, \dots, [ ( A - a ) / h ] $, for any fixed interval $ [ a , A ] $. For Dahlquist stability it is sufficient that the simple roots of the characteristic polynomial of the left-hand side of the difference equation do not exceed one in modulus, and that the multiple roots are strictly less than one in modulus. In the case given, the characteristic polynomial $ \rho ( \lambda ) = \lambda ^ {2} - 1 $ has roots $ \lambda = \pm 1 $ and, consequently, the stability condition holds. However, in solving a system of equations $ y ^ \prime = A y $ with a matrix $ A $ having negative eigen values, a rapid growth in the calculation error occurs.

The predictor-corrector Milne method uses a pair of finite-difference formulas:

a predictor

$$ \overline{y} _ {i} = y _ {i- 4} + \frac{4h}{3} ( 2 f _ {i- 3} + f _ {i- 2} + 2 f _ {i- 1} ) ,\ \ i = 4 , 5 \dots $$

and a corrector

$$ \overline{ \overline{y} } _ {i} = \ y _ {i- 2} + \frac{h}{3} ( f _ {i} + 4 f _ {i- 1} + f _ {i- 2} ) ,\ \ i = 4 , 5 \dots $$

where

$$ f _ {i} = f ( x _ {i} , y _ {i} ) ,\ \ \overline{f} _ {i} = f ( x _ {i} , \overline{y} _ {i} ) . $$

An approximate expression for the error is given by the quantity

$$ \epsilon _ {i} = \ \frac{1}{29} ( \overline{y} _ {i} - \overline{ {\overline{y} }} _ {i} ) . $$

Additional initial values $ y _ {i} \approx y ( x _ {j} ) $, $ j = 1 , 2 , 3 $, are calculated by some other means, for example, by the Runge–Kutta method, which has fourth-order accuracy. The method was proposed in [3].

References

[1] N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)
[2] B.P. Demidovich, I.A. Maron, E.Z. Shuvalova, "Numerische Methoden der Analysis" , Deutsch. Verlag Wissenschaft. (1968) (Translated from Russian)
[3] W.E. Milne, "Numerical solution of differential equations" , Dover, reprint (1970)

Comments

In the Western literature, the method here called "Milne method" is called the (explicit) midpoint rule. Instead, the corrector appearing in the "predictor-corrector Milne method" is called the Milne method or a Milne device. This method is direct generalization of the Simpson quadrature rule to differential equations. The terminology "Dahlquist stability" is nowadays seldom used in the English literature. More frequently, one uses "zero-stabilityzero-stability" , "root-stabilityroot-stability" , or just "stability" .

References

[a1] P. Henrici, "Discrete variable methods in ordinary differential equations" , Wiley (1962)
How to Cite This Entry:
Milne method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Milne_method&oldid=16074
This article was adapted from an original article by V.V. Pospelov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article