Difference between revisions of "Lévy canonical representation"
(MSC|60E07|60G51 Category:Distribution theory Category:Stochastic processes) |
m (fixing subscripts) |
||
| (5 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | l0582701.png | ||
| + | $#A+1 = 60 n = 0 | ||
| + | $#C+1 = 60 : ~/encyclopedia/old_files/data/L058/L.0508270 L\Aeevy canonical representation | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
{{MSC|60E07|60G51}} | {{MSC|60E07|60G51}} | ||
| Line 4: | Line 16: | ||
[[Category:Stochastic processes]] | [[Category:Stochastic processes]] | ||
| − | A formula for the logarithm | + | A formula for the logarithm $ \mathop{\rm ln} \phi ( \lambda ) $ |
| + | of the [[Characteristic function|characteristic function]] of an [[Infinitely-divisible distribution|infinitely-divisible distribution]]: | ||
| − | + | $$ | |
| + | \mathop{\rm ln} \phi ( \lambda ) = i \gamma \lambda - | ||
| − | + | \frac{\sigma ^ {2} \lambda ^ {2} }{2} | |
| + | + | ||
| + | \int\limits _ {- \infty } ^ { 0 } | ||
| + | \left ( | ||
| + | e ^ {i \lambda x } - 1 - | ||
| − | + | \frac{i \lambda x }{1 + x ^ {2} } | |
| − | + | \right ) \ | |
| + | d M ( x) + | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | + | ||
| + | \int\limits _ { 0 } ^ \infty \left ( e ^ {i \lambda x } - 1 | ||
| + | - | ||
| + | \frac{i \lambda x }{1 + x ^ {2} } | ||
| + | \right ) d N ( x) , | ||
| + | $$ | ||
| + | |||
| + | where the characteristics of the Lévy canonical representation, $ \gamma $, | ||
| + | $ \sigma ^ {2} $, | ||
| + | $ M $, | ||
| + | and $ N $, | ||
| + | satisfy the following conditions: $ - \infty < \gamma < \infty $, | ||
| + | $ \sigma ^ {2} \geq 0 $, | ||
| + | and $ M ( x) $ | ||
| + | and $ N ( x) $ | ||
| + | are non-decreasing left-continuous functions on $ ( - \infty , 0 ) $ | ||
| + | and $ ( 0 , \infty ) $, | ||
| + | respectively, such that | ||
| + | |||
| + | $$ | ||
| + | \lim\limits _ {x \rightarrow \infty } \ | ||
| + | N ( x) = \lim\limits _ {x \rightarrow - \infty } \ | ||
| + | M ( x) = 0 | ||
| + | $$ | ||
and | and | ||
| − | + | $$ | |
| + | \int\limits _ { - 1} ^ { 0 } x ^ {2} d M ( x) < \infty ,\ \ | ||
| + | \int\limits _ { 0 } ^ { 1 } x ^ {2} d N ( x) < \infty . | ||
| + | $$ | ||
| − | To every infinitely-divisible distribution there corresponds a unique system of characteristics | + | To every infinitely-divisible distribution there corresponds a unique system of characteristics $ \gamma $, |
| + | $ \sigma ^ {2} $, | ||
| + | $ M $, | ||
| + | $ N $ | ||
| + | in the Lévy canonical representation, and conversely, under the above conditions on $ \gamma $, | ||
| + | $ \sigma ^ {2} $, | ||
| + | $ M $, | ||
| + | and $ N $ | ||
| + | the Lévy canonical representation with respect to such a system determines the logarithm of the characteristic function of some infinitely-divisible distribution. | ||
| − | Thus, for the [[Normal distribution|normal distribution]] with mean | + | Thus, for the [[Normal distribution|normal distribution]] with mean $ a $ |
| + | and variance $ \sigma ^ {2} $: | ||
| − | + | $$ | |
| + | \gamma = a ,\ \sigma ^ {2} = \sigma ^ {2} ,\ \ | ||
| + | N ( x) \equiv 0 ,\ M ( x) \equiv 0 . | ||
| + | $$ | ||
| − | For the [[Poisson distribution|Poisson distribution]] with parameter | + | For the [[Poisson distribution|Poisson distribution]] with parameter $ \lambda $: |
| − | + | $$ | |
| + | \gamma = | ||
| + | \frac \lambda {2} | ||
| + | ,\ \ | ||
| + | \sigma ^ {2} = 0 ,\ \ | ||
| + | M ( x) \equiv 0 ,\ \ | ||
| + | N ( x) = \left \{ | ||
| + | \begin{array}{rl} | ||
| + | - \lambda & \textrm{ for } x \leq 1 , \\ | ||
| + | 0 & \textrm{ for } x > 1 . \\ | ||
| + | \end{array} | ||
| − | + | \right .$$ | |
| − | + | To the [[Stable distribution|stable distribution]] with exponent $ \alpha $, | |
| + | $ 0 < \alpha < 2 $, | ||
| + | corresponds the Lévy representation with | ||
| − | + | $$ | |
| + | \sigma ^ {2} = 0 ,\ \ | ||
| + | \textrm{ any } \ | ||
| + | \gamma ,\ M ( x) = | ||
| + | \frac{c _ {1} }{| x | ^ \alpha } | ||
| + | ,\ \ | ||
| + | N ( x) = - | ||
| + | \frac{c _ {2} }{x ^ \alpha } | ||
| + | , | ||
| + | $$ | ||
| − | + | where $ c _ {i} \geq 0 $, | |
| + | $ i = 1 , 2 $, | ||
| + | are constants $ ( c _ {1} + c _ {2} > 0 ) $. | ||
| + | The Lévy canonical representation of an infinitely-divisible distribution was proposed by P. Lévy in 1934. It is a generalization of a formula found by A.N. Kolmogorov in 1932 for the case when the infinitely-divisible distribution has finite variance. For $ \mathop{\rm ln} \phi ( \lambda ) $ | ||
| + | there is a formula equivalent to the Lévy canonical representation, proposed in 1937 by A.Ya. Khinchin and called the [[Lévy–Khinchin canonical representation|Lévy–Khinchin canonical representation]]. The probabilistic meaning of the functions $ N $ | ||
| + | and $ M $ | ||
| + | and the range of applicability of the Lévy canonical representation are defined as follows: To every infinitely-divisible distribution function $ F $ | ||
| + | corresponds a stochastically-continuous process with stationary independent increments | ||
| + | |||
| + | $$ | ||
| + | X = \{ {X ( t) } : {0 \leq t < \infty } \} | ||
| + | ,\ X ( 0) = 0 , | ||
| + | $$ | ||
such that | such that | ||
| − | + | $$ | |
| + | F ( X) = {\mathsf P} \{ X ( 1) < x \} . | ||
| + | $$ | ||
| − | In turn, a [[Separable process|separable process]] | + | In turn, a [[Separable process|separable process]] $ X $ |
| + | of the type mentioned has with probability 1 sample trajectories without discontinuities of the second kind; hence for $ b > a > 0 $ | ||
| + | the random variable $ Y ( [ a , b ) ) $ | ||
| + | equal to the number of elements in the set | ||
| − | + | $$ | |
| + | \left \{ {t } : {a \leq \lim\limits _ {\tau \downarrow 0 } \ | ||
| + | X ( t + \tau ) - \lim\limits _ {\tau \downarrow 0 } \ | ||
| + | X ( t - \tau ) < b , 0 \leq t \leq 1 } \right \} | ||
| + | , | ||
| + | $$ | ||
| − | i.e. to the number of jumps with heights in | + | i.e. to the number of jumps with heights in $ [ a , b ) $ |
| + | on the interval $ [ 0 , 1 ] $, | ||
| + | exists. In this notation, one has for the function $ N $ | ||
| + | corresponding to $ F $, | ||
| − | + | $$ | |
| + | {\mathsf E} \{ Y ( [ a , b ) ) \} = N ( b) - N ( a) . | ||
| + | $$ | ||
| − | A similar relation holds for the function | + | A similar relation holds for the function $ M $. |
| − | Many properties of the behaviour of the sample trajectories of a separable process | + | Many properties of the behaviour of the sample trajectories of a separable process $ X $ |
| + | can be expressed in terms of the characteristics of the Lévy canonical representation of the distribution function $ {\mathsf P} \{ X ( 1) < x \} $. | ||
| + | In particular, if $ \sigma ^ {2} = 0 $, | ||
| − | + | $$ | |
| + | \lim\limits _ {x \rightarrow 0 } N ( x) > - \infty ,\ \ | ||
| + | \lim\limits _ {x \rightarrow 0 } M ( x) < \infty , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \gamma = \int\limits _ {- \infty } ^ { 0 } | ||
| + | \frac{x}{1 + x ^ {2} } | ||
| + | d M | ||
| + | ( x) + \int\limits _ { 0 } ^ \infty | ||
| + | \frac{x}{1 + x ^ {2} } | ||
| + | d N ( x) , | ||
| + | $$ | ||
| − | then almost-all the sample functions of | + | then almost-all the sample functions of $ X $ |
| + | are with probability 1 step functions with finitely many jumps on any finite interval. If $ \sigma ^ {2} = 0 $ | ||
| + | and if | ||
| − | + | $$ | |
| + | \int\limits _ { - 1} ^ { 0 } | x | d M ( x) + | ||
| + | \int\limits _ { 0 } ^ { 1 } x d N ( x) < \infty , | ||
| + | $$ | ||
| − | then with probability 1 the sample trajectories of | + | then with probability 1 the sample trajectories of $ X $ |
| + | have bounded variation on any finite interval. Directly in terms of the characteristics of the Lévy canonical representation one can calculated the [[Infinitesimal operator|infinitesimal operator]] corresponding to the process $ X $, | ||
| + | regarded as a Markov random function. Many analytical properties of an infinitely-divisible distribution function can be expressed directly in terms of the characteristics of its Lévy canonical representation. | ||
There are analogues of the Lévy canonical representation for infinitely-divisible distributions given on a wide class of algebraic structures. | There are analogues of the Lévy canonical representation for infinitely-divisible distributions given on a wide class of algebraic structures. | ||
====References==== | ====References==== | ||
| − | + | {| | |
| − | + | |valign="top"|{{Ref|GK}}|| B.V. Gnedenko, A.N. Kolmogorov, "Limit distributions for sums of independent random variables" , Addison-Wesley (1954) (Translated from Russian) {{MR|0062975}} {{ZBL|0056.36001}} | |
| − | + | |- | |
| + | |valign="top"|{{Ref|Pe}}|| V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) {{MR|0388499}} {{ZBL|0322.60043}} {{ZBL|0322.60042}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|PR}}|| Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) {{MR|0251754}} {{ZBL|}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|GS}}|| I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|I}}|| K. Itô, "Stochastic processes" , Aarhus Univ. (1969) | ||
| + | |} | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
| − | + | {| | |
| + | |valign="top"|{{Ref|Lo}}|| M. Loève, "Probability theory" , '''1''' , Springer (1977) {{MR|0651017}} {{MR|0651018}} {{ZBL|0359.60001}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|B}}|| L.P. Breiman, "Probability" , Addison-Wesley (1968) {{MR|0229267}} {{ZBL|0174.48801}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|Lu}}|| E. Lukacs, "Characteristic functions" , Griffin (1970) {{MR|0346874}} {{MR|0259980}} {{ZBL|0201.20404}} {{ZBL|0198.23804}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|H}}|| H. Heyer, "Probability measures on locally compact groups" , Springer (1977) | ||
| + | |- | ||
| + | |valign="top"|{{Ref|Pa}}|| K.R. Parthasarathy, "Probability measures on metric spaces" , Acad. Press (1967) {{MR|0226684}} {{ZBL|0153.19101}} | ||
| + | |- | ||
| + | |valign="top"|{{Ref|GK2}}|| B.V. Gnedenko, A.N. Kolmogorov, "Introduction to the theory of random processes" , Saunders (1969) (Translated from Russian) | ||
| + | |} | ||
Latest revision as of 01:14, 19 January 2022
2020 Mathematics Subject Classification: Primary: 60E07 Secondary: 60G51 [MSN][ZBL]
A formula for the logarithm $ \mathop{\rm ln} \phi ( \lambda ) $ of the characteristic function of an infinitely-divisible distribution:
$$ \mathop{\rm ln} \phi ( \lambda ) = i \gamma \lambda - \frac{\sigma ^ {2} \lambda ^ {2} }{2} + \int\limits _ {- \infty } ^ { 0 } \left ( e ^ {i \lambda x } - 1 - \frac{i \lambda x }{1 + x ^ {2} } \right ) \ d M ( x) + $$
$$ + \int\limits _ { 0 } ^ \infty \left ( e ^ {i \lambda x } - 1 - \frac{i \lambda x }{1 + x ^ {2} } \right ) d N ( x) , $$
where the characteristics of the Lévy canonical representation, $ \gamma $, $ \sigma ^ {2} $, $ M $, and $ N $, satisfy the following conditions: $ - \infty < \gamma < \infty $, $ \sigma ^ {2} \geq 0 $, and $ M ( x) $ and $ N ( x) $ are non-decreasing left-continuous functions on $ ( - \infty , 0 ) $ and $ ( 0 , \infty ) $, respectively, such that
$$ \lim\limits _ {x \rightarrow \infty } \ N ( x) = \lim\limits _ {x \rightarrow - \infty } \ M ( x) = 0 $$
and
$$ \int\limits _ { - 1} ^ { 0 } x ^ {2} d M ( x) < \infty ,\ \ \int\limits _ { 0 } ^ { 1 } x ^ {2} d N ( x) < \infty . $$
To every infinitely-divisible distribution there corresponds a unique system of characteristics $ \gamma $, $ \sigma ^ {2} $, $ M $, $ N $ in the Lévy canonical representation, and conversely, under the above conditions on $ \gamma $, $ \sigma ^ {2} $, $ M $, and $ N $ the Lévy canonical representation with respect to such a system determines the logarithm of the characteristic function of some infinitely-divisible distribution.
Thus, for the normal distribution with mean $ a $ and variance $ \sigma ^ {2} $:
$$ \gamma = a ,\ \sigma ^ {2} = \sigma ^ {2} ,\ \ N ( x) \equiv 0 ,\ M ( x) \equiv 0 . $$
For the Poisson distribution with parameter $ \lambda $:
$$ \gamma = \frac \lambda {2} ,\ \ \sigma ^ {2} = 0 ,\ \ M ( x) \equiv 0 ,\ \ N ( x) = \left \{ \begin{array}{rl} - \lambda & \textrm{ for } x \leq 1 , \\ 0 & \textrm{ for } x > 1 . \\ \end{array} \right .$$
To the stable distribution with exponent $ \alpha $, $ 0 < \alpha < 2 $, corresponds the Lévy representation with
$$ \sigma ^ {2} = 0 ,\ \ \textrm{ any } \ \gamma ,\ M ( x) = \frac{c _ {1} }{| x | ^ \alpha } ,\ \ N ( x) = - \frac{c _ {2} }{x ^ \alpha } , $$
where $ c _ {i} \geq 0 $, $ i = 1 , 2 $, are constants $ ( c _ {1} + c _ {2} > 0 ) $. The Lévy canonical representation of an infinitely-divisible distribution was proposed by P. Lévy in 1934. It is a generalization of a formula found by A.N. Kolmogorov in 1932 for the case when the infinitely-divisible distribution has finite variance. For $ \mathop{\rm ln} \phi ( \lambda ) $ there is a formula equivalent to the Lévy canonical representation, proposed in 1937 by A.Ya. Khinchin and called the Lévy–Khinchin canonical representation. The probabilistic meaning of the functions $ N $ and $ M $ and the range of applicability of the Lévy canonical representation are defined as follows: To every infinitely-divisible distribution function $ F $ corresponds a stochastically-continuous process with stationary independent increments
$$ X = \{ {X ( t) } : {0 \leq t < \infty } \} ,\ X ( 0) = 0 , $$
such that
$$ F ( X) = {\mathsf P} \{ X ( 1) < x \} . $$
In turn, a separable process $ X $ of the type mentioned has with probability 1 sample trajectories without discontinuities of the second kind; hence for $ b > a > 0 $ the random variable $ Y ( [ a , b ) ) $ equal to the number of elements in the set
$$ \left \{ {t } : {a \leq \lim\limits _ {\tau \downarrow 0 } \ X ( t + \tau ) - \lim\limits _ {\tau \downarrow 0 } \ X ( t - \tau ) < b , 0 \leq t \leq 1 } \right \} , $$
i.e. to the number of jumps with heights in $ [ a , b ) $ on the interval $ [ 0 , 1 ] $, exists. In this notation, one has for the function $ N $ corresponding to $ F $,
$$ {\mathsf E} \{ Y ( [ a , b ) ) \} = N ( b) - N ( a) . $$
A similar relation holds for the function $ M $.
Many properties of the behaviour of the sample trajectories of a separable process $ X $ can be expressed in terms of the characteristics of the Lévy canonical representation of the distribution function $ {\mathsf P} \{ X ( 1) < x \} $. In particular, if $ \sigma ^ {2} = 0 $,
$$ \lim\limits _ {x \rightarrow 0 } N ( x) > - \infty ,\ \ \lim\limits _ {x \rightarrow 0 } M ( x) < \infty , $$
$$ \gamma = \int\limits _ {- \infty } ^ { 0 } \frac{x}{1 + x ^ {2} } d M ( x) + \int\limits _ { 0 } ^ \infty \frac{x}{1 + x ^ {2} } d N ( x) , $$
then almost-all the sample functions of $ X $ are with probability 1 step functions with finitely many jumps on any finite interval. If $ \sigma ^ {2} = 0 $ and if
$$ \int\limits _ { - 1} ^ { 0 } | x | d M ( x) + \int\limits _ { 0 } ^ { 1 } x d N ( x) < \infty , $$
then with probability 1 the sample trajectories of $ X $ have bounded variation on any finite interval. Directly in terms of the characteristics of the Lévy canonical representation one can calculated the infinitesimal operator corresponding to the process $ X $, regarded as a Markov random function. Many analytical properties of an infinitely-divisible distribution function can be expressed directly in terms of the characteristics of its Lévy canonical representation.
There are analogues of the Lévy canonical representation for infinitely-divisible distributions given on a wide class of algebraic structures.
References
| [GK] | B.V. Gnedenko, A.N. Kolmogorov, "Limit distributions for sums of independent random variables" , Addison-Wesley (1954) (Translated from Russian) MR0062975 Zbl 0056.36001 |
| [Pe] | V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) MR0388499 Zbl 0322.60043 Zbl 0322.60042 |
| [PR] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) MR0251754 |
| [GS] | I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027 |
| [I] | K. Itô, "Stochastic processes" , Aarhus Univ. (1969) |
Comments
References
| [Lo] | M. Loève, "Probability theory" , 1 , Springer (1977) MR0651017 MR0651018 Zbl 0359.60001 |
| [B] | L.P. Breiman, "Probability" , Addison-Wesley (1968) MR0229267 Zbl 0174.48801 |
| [Lu] | E. Lukacs, "Characteristic functions" , Griffin (1970) MR0346874 MR0259980 Zbl 0201.20404 Zbl 0198.23804 |
| [H] | H. Heyer, "Probability measures on locally compact groups" , Springer (1977) |
| [Pa] | K.R. Parthasarathy, "Probability measures on metric spaces" , Acad. Press (1967) MR0226684 Zbl 0153.19101 |
| [GK2] | B.V. Gnedenko, A.N. Kolmogorov, "Introduction to the theory of random processes" , Saunders (1969) (Translated from Russian) |
Lévy canonical representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=L%C3%A9vy_canonical_representation&oldid=21621