|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''in a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975401.png" />''
| + | <!-- |
| + | w0975401.png |
| + | $#A+1 = 95 n = 0 |
| + | $#C+1 = 95 : ~/encyclopedia/old_files/data/W097/W.0907540 Weight of a representation of a Lie algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975402.png" /> from the [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975403.png" /> into its field of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975404.png" /> for which there exists a non-zero vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975405.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975406.png" /> such that for the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975407.png" /> one has
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975408.png" /></td> </tr></table>
| + | ''in a vector space $ V $'' |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w0975409.png" /> and some integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754010.png" /> (which in general depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754012.png" />). Here 1 denotes the identity transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754013.png" />. One also says in such a case that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754014.png" /> is a weight of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754016.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754017.png" /> defined by the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754018.png" />. The set of all vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754019.png" /> which satisfy this condition, together with zero, forms a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754020.png" />, which is known as the weight subspace of the weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754021.png" /> (or corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754022.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754024.png" /> is said to be a weight space or weight module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754027.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754028.png" />. | + | A linear mapping $ \alpha $ |
| + | from the [[Lie algebra|Lie algebra]] $ L $ |
| + | into its field of definition $ k $ |
| + | for which there exists a non-zero vector $ x $ |
| + | of $ V $ |
| + | such that for the representation $ \rho $ |
| + | one has |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754029.png" /> is a finite-dimensional module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754030.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754031.png" />, its contragredient module (cf. [[Contragredient representation|Contragredient representation]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754032.png" /> is a weight module of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754033.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754035.png" /> are weight modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754036.png" /> of weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754038.png" />, respectively, then their tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754039.png" /> is a weight module of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754040.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754041.png" /> is a nilpotent Lie algebra, a weight subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754042.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754043.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754044.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754045.png" />-submodule of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754046.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754047.png" />. If, in addition,
| + | $$ |
| + | ( \rho ( h) - \alpha ( h) 1) ^ {{n} _ {x,h}} ( x) = 0 |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754048.png" /></td> </tr></table>
| + | for all $ h \in L $ |
| + | and some integer $ n _ {x,h} > 0 $ ( |
| + | which in general depends on $ x $ |
| + | and $ h $). |
| + | Here 1 denotes the identity transformation of $ V $. |
| + | One also says in such a case that $ \alpha $ |
| + | is a weight of the $ L $-module $ V $ |
| + | defined by the representation $ \rho $. |
| + | The set of all vectors $ x \in V $ |
| + | which satisfy this condition, together with zero, forms a subspace $ V _ \alpha $, |
| + | which is known as the weight subspace of the weight $ \alpha $ (or corresponding to $ \alpha $). |
| + | If $ V = V _ \alpha $, |
| + | then $ V $ |
| + | is said to be a weight space or weight module over $ L $ |
| + | of weight $ \alpha $. |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754049.png" /> is a splitting Lie algebra of linear transformations of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754051.png" /> can be decomposed into a direct sum of a finite number of weight subspaces of different weights:
| + | If $ V $ |
| + | is a finite-dimensional module over $ L $ |
| + | of weight $ \alpha $, |
| + | its contragredient module (cf. [[Contragredient representation|Contragredient representation]]) $ V ^ {*} $ |
| + | is a weight module of weight $ - \alpha $; |
| + | if $ V $ |
| + | and $ W $ |
| + | are weight modules over $ L $ |
| + | of weights $ \alpha $ |
| + | and $ \beta $, |
| + | respectively, then their tensor product $ V \otimes W $ |
| + | is a weight module of weight $ \alpha + \beta $. |
| + | If $ L $ |
| + | is a nilpotent Lie algebra, a weight subspace $ V _ \alpha $ |
| + | of weight $ \alpha $ |
| + | in $ V $ |
| + | is an $ L $-submodule of the $ L $- |
| + | module $ V $. |
| + | If, in addition, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754052.png" /></td> </tr></table> | + | $$ |
| + | \mathop{\rm dim} _ {k} V < \infty |
| + | $$ |
| | | |
− | (the weight decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754053.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754054.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754055.png" /> is a nilpotent subalgebra of a finite-dimensional Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754056.png" />, considered as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754057.png" />-module with respect to the adjoint representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754058.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754059.png" /> (cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754060.png" /> is a splitting Lie algebra of linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754061.png" />, then the corresponding weight decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754062.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754063.png" />, | + | and $ \rho ( L) $ |
| + | is a splitting Lie algebra of linear transformations of the module $ V $, |
| + | then $ V $ |
| + | can be decomposed into a direct sum of a finite number of weight subspaces of different weights: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754064.png" /></td> </tr></table>
| + | $$ |
| + | V = V _ \sigma \oplus V _ \delta \oplus \dots \oplus V _ \tau $$ |
| | | |
− | is called the Fitting decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754065.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754066.png" />, the weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754067.png" /> are called the roots, while the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754068.png" /> are called the root subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754069.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754070.png" />. If, in addition, one specifies the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754071.png" /> of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754072.png" /> in a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754073.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754074.png" /> is a splitting Lie algebra of linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754075.png" />, and
| + | (the weight decomposition of $ V $ |
| + | with respect to $ L $). |
| + | If $ L $ |
| + | is a nilpotent subalgebra of a finite-dimensional Lie algebra $ M $, |
| + | considered as an $ L $- |
| + | module with respect to the adjoint representation $ { \mathop{\rm ad} } _ {M} $ |
| + | of $ M $ ( |
| + | cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]), and $ { \mathop{\rm ad} } _ {M} L $ |
| + | is a splitting Lie algebra of linear transformations of $ M $, |
| + | then the corresponding weight decomposition of $ M $ |
| + | with respect to $ L $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754076.png" /></td> </tr></table>
| + | $$ |
| + | M = M _ \alpha \oplus M _ \beta \oplus \dots \oplus M _ \gamma $$ |
| | | |
− | is the corresponding weight decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754077.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754078.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754079.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754080.png" /> is a weight of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754081.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754082.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754083.png" /> otherwise. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754084.png" /> is a root, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754085.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754086.png" /> otherwise. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754087.png" /> is a field of characteristic zero, the weights <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754088.png" /> and the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754089.png" /> are linear functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754090.png" /> which vanish on the commutator subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754091.png" />. | + | is called the Fitting decomposition of $ M $ |
| + | with respect to $ L $, |
| + | the weights $ \alpha , \beta \dots \gamma $ |
| + | are called the roots, while the spaces $ M _ \alpha , M _ \beta \dots M _ \gamma $ |
| + | are called the root subspaces of $ M $ |
| + | with respect to $ L $. |
| + | If, in addition, one specifies the representation $ \rho $ |
| + | of the algebra $ M $ |
| + | in a finite-dimensional vector space $ V $ |
| + | for which $ \rho ( L) $ |
| + | is a splitting Lie algebra of linear transformations of $ V $, |
| + | and |
| + | |
| + | $$ |
| + | V = V _ \sigma \oplus V _ \delta \oplus \dots \oplus V _ \tau $$ |
| + | |
| + | is the corresponding weight decomposition of $ V $ |
| + | with respect to $ L $, |
| + | then $ \rho ( M _ \alpha )( V _ \sigma ) \subseteq V _ {\alpha + \sigma } $ |
| + | if $ \alpha + \sigma $ |
| + | is a weight of $ V $ |
| + | with respect to $ L $, |
| + | and $ \rho ( M _ \alpha )( V _ \sigma ) = 0 $ |
| + | otherwise. In particular, if $ \alpha + \beta $ |
| + | is a root, then $ [ M _ \alpha , M _ \beta ] \subseteq M _ {\alpha + \beta } $, |
| + | and $ [ M _ \alpha , M _ \beta ] = 0 $ |
| + | otherwise. If $ k $ |
| + | is a field of characteristic zero, the weights $ \sigma , \delta \dots \tau $ |
| + | and the roots $ \alpha , \beta \dots \gamma $ |
| + | are linear functions on $ L $ |
| + | which vanish on the commutator subalgebra of $ L $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | A set (algebra, Lie algebra, etc.) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754092.png" /> of linear transformations of a vector space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754093.png" /> is called split or splitting if the characteristic polynomial of each of the transformations has all its roots in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754094.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754095.png" /> contains a splitting field (cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]) of the characteristic polynomial of each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754096.png" />. | + | A set (algebra, Lie algebra, etc.) $ L $ |
| + | of linear transformations of a vector space over a field $ k $ |
| + | is called split or splitting if the characteristic polynomial of each of the transformations has all its roots in $ k $, |
| + | i.e. if $ k $ |
| + | contains a splitting field (cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]) of the characteristic polynomial of each $ h \in L $. |
| | | |
− | A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754097.png" /> of Lie algebras is split if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097540/w09754098.png" /> is a split Lie algebra of linear transformations. | + | A representation $ \rho : L \rightarrow \mathop{\rm End} ( V) $ |
| + | of Lie algebras is split if $ \rho ( L) $ |
| + | is a split Lie algebra of linear transformations. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII</TD></TR></table> |
in a vector space $ V $
A linear mapping $ \alpha $
from the Lie algebra $ L $
into its field of definition $ k $
for which there exists a non-zero vector $ x $
of $ V $
such that for the representation $ \rho $
one has
$$
( \rho ( h) - \alpha ( h) 1) ^ {{n} _ {x,h}} ( x) = 0
$$
for all $ h \in L $
and some integer $ n _ {x,h} > 0 $ (
which in general depends on $ x $
and $ h $).
Here 1 denotes the identity transformation of $ V $.
One also says in such a case that $ \alpha $
is a weight of the $ L $-module $ V $
defined by the representation $ \rho $.
The set of all vectors $ x \in V $
which satisfy this condition, together with zero, forms a subspace $ V _ \alpha $,
which is known as the weight subspace of the weight $ \alpha $ (or corresponding to $ \alpha $).
If $ V = V _ \alpha $,
then $ V $
is said to be a weight space or weight module over $ L $
of weight $ \alpha $.
If $ V $
is a finite-dimensional module over $ L $
of weight $ \alpha $,
its contragredient module (cf. Contragredient representation) $ V ^ {*} $
is a weight module of weight $ - \alpha $;
if $ V $
and $ W $
are weight modules over $ L $
of weights $ \alpha $
and $ \beta $,
respectively, then their tensor product $ V \otimes W $
is a weight module of weight $ \alpha + \beta $.
If $ L $
is a nilpotent Lie algebra, a weight subspace $ V _ \alpha $
of weight $ \alpha $
in $ V $
is an $ L $-submodule of the $ L $-
module $ V $.
If, in addition,
$$
\mathop{\rm dim} _ {k} V < \infty
$$
and $ \rho ( L) $
is a splitting Lie algebra of linear transformations of the module $ V $,
then $ V $
can be decomposed into a direct sum of a finite number of weight subspaces of different weights:
$$
V = V _ \sigma \oplus V _ \delta \oplus \dots \oplus V _ \tau $$
(the weight decomposition of $ V $
with respect to $ L $).
If $ L $
is a nilpotent subalgebra of a finite-dimensional Lie algebra $ M $,
considered as an $ L $-
module with respect to the adjoint representation $ { \mathop{\rm ad} } _ {M} $
of $ M $ (
cf. Adjoint representation of a Lie group), and $ { \mathop{\rm ad} } _ {M} L $
is a splitting Lie algebra of linear transformations of $ M $,
then the corresponding weight decomposition of $ M $
with respect to $ L $,
$$
M = M _ \alpha \oplus M _ \beta \oplus \dots \oplus M _ \gamma $$
is called the Fitting decomposition of $ M $
with respect to $ L $,
the weights $ \alpha , \beta \dots \gamma $
are called the roots, while the spaces $ M _ \alpha , M _ \beta \dots M _ \gamma $
are called the root subspaces of $ M $
with respect to $ L $.
If, in addition, one specifies the representation $ \rho $
of the algebra $ M $
in a finite-dimensional vector space $ V $
for which $ \rho ( L) $
is a splitting Lie algebra of linear transformations of $ V $,
and
$$
V = V _ \sigma \oplus V _ \delta \oplus \dots \oplus V _ \tau $$
is the corresponding weight decomposition of $ V $
with respect to $ L $,
then $ \rho ( M _ \alpha )( V _ \sigma ) \subseteq V _ {\alpha + \sigma } $
if $ \alpha + \sigma $
is a weight of $ V $
with respect to $ L $,
and $ \rho ( M _ \alpha )( V _ \sigma ) = 0 $
otherwise. In particular, if $ \alpha + \beta $
is a root, then $ [ M _ \alpha , M _ \beta ] \subseteq M _ {\alpha + \beta } $,
and $ [ M _ \alpha , M _ \beta ] = 0 $
otherwise. If $ k $
is a field of characteristic zero, the weights $ \sigma , \delta \dots \tau $
and the roots $ \alpha , \beta \dots \gamma $
are linear functions on $ L $
which vanish on the commutator subalgebra of $ L $.
References
[1] | N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979)) |
[2] | D.P. Zhelobenko, "Compact Lie groups and their representations" , Amer. Math. Soc. (1973) (Translated from Russian) |
A set (algebra, Lie algebra, etc.) $ L $
of linear transformations of a vector space over a field $ k $
is called split or splitting if the characteristic polynomial of each of the transformations has all its roots in $ k $,
i.e. if $ k $
contains a splitting field (cf. Splitting field of a polynomial) of the characteristic polynomial of each $ h \in L $.
A representation $ \rho : L \rightarrow \mathop{\rm End} ( V) $
of Lie algebras is split if $ \rho ( L) $
is a split Lie algebra of linear transformations.
References
[a1] | N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1975) pp. Chapts. VII-VIII |