Difference between revisions of "Stirling interpolation formula"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(corrected several typos) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | The half-sum of the [[Gauss interpolation formula|Gauss interpolation formula]] for forward interpolation with respect to the nodes $ x _ {0} , x _ {0} + h, x _ {0} - h \dots x _ {0} + nh, x _ {0} - nh $ | + | The half-sum of the [[Gauss interpolation formula|Gauss interpolation formula]] for forward interpolation with respect to the nodes $ x _ {0} , x _ {0} + h, x _ {0} - h ,\dots, x _ {0} + nh, x _ {0} - nh $ |
at the point $ x = x _ {0} + th $: | at the point $ x = x _ {0} + th $: | ||
$$ | $$ | ||
G _ {2n} ( x _ {0} + th) = \ | G _ {2n} ( x _ {0} + th) = \ | ||
− | f _ {0} + f _ {1/2} ^ { 1 } t + f _ {0} ^ { 2 } t( t- | + | f _ {0} + f _ {1/2} ^ { 1 } t + f _ {0} ^ { 2 }\frac{ t( t- |
− | + | 1)}{2!} | |
+ | + | ||
$$ | $$ | ||
Line 33: | Line 33: | ||
+ | + | ||
f _ {0} ^ { 2n } | f _ {0} ^ { 2n } | ||
− | \frac{t( t ^ {2} - 1 ^ {2} ) {} \dots [ t ^ {2} -( n- 1) ^ {2} ]( t- n) }{(} | + | \frac{t( t ^ {2} - 1 ^ {2} ) {} \dots [ t ^ {2} -( n- 1) ^ {2} ]( t- n) }{(2n)!} |
− | + | ||
$$ | $$ | ||
− | and Gauss' formula of the same order for backward interpolation with respect to the nodes $ x _ {0} , x _ {0} - h, x _ {0} + h \dots x _ {0} - nh, x _ {0} + nh $: | + | and Gauss' formula of the same order for backward interpolation with respect to the nodes $ x _ {0} , x _ {0} - h, x _ {0} + h, \dots ,x _ {0} - nh, x _ {0} + nh $: |
$$ | $$ | ||
G _ {2n} ( x _ {0} + th) = \ | G _ {2n} ( x _ {0} + th) = \ | ||
− | f _ {0} + f _ {- | + | f _ {0} + f _ {-1/2 } ^ { 1 } t + f _ {0} ^ { 2 } \frac{t( t+ |
− | + | 1)}{2!} | |
+ \dots + | + \dots + | ||
$$ | $$ | ||
Line 49: | Line 49: | ||
+ | + | ||
f _ {0} ^ { 2n } | f _ {0} ^ { 2n } | ||
− | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ]( t+ n) }{( | + | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ]( t+ n) }{( 2n)! } |
− | + | . | |
$$ | $$ | ||
Line 59: | Line 59: | ||
\frac{1}{2} | \frac{1}{2} | ||
− | [ f _ {1/2} ^ { 2k- 1 } + f _ {- | + | [ f _ {1/2} ^ { 2k- 1 } + f _ {- 1/2} ^ { 2k- 1 } ] , |
$$ | $$ | ||
Line 74: | Line 74: | ||
+ | + | ||
− | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( | + | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( 2n- 1)!} |
− | + | f _ {0} ^ { 2n- 1 } + | |
− | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( | + | \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( 2n)! } |
− | + | f _ {0} ^ { 2n } . | |
$$ | $$ | ||
Latest revision as of 00:52, 31 December 2021
The half-sum of the Gauss interpolation formula for forward interpolation with respect to the nodes $ x _ {0} , x _ {0} + h, x _ {0} - h ,\dots, x _ {0} + nh, x _ {0} - nh $
at the point $ x = x _ {0} + th $:
$$ G _ {2n} ( x _ {0} + th) = \ f _ {0} + f _ {1/2} ^ { 1 } t + f _ {0} ^ { 2 }\frac{ t( t- 1)}{2!} + $$
$$ + f _ {1/2} ^ { 3 } \frac{t( t ^ {2} - 1 ^ {2} ) }{3!} + f _ {0} ^ { 4 } \frac{t( t ^ {2} - 1 ^ {2} )( t - 2) }{4!} + \dots + $$
$$ + f _ {0} ^ { 2n } \frac{t( t ^ {2} - 1 ^ {2} ) {} \dots [ t ^ {2} -( n- 1) ^ {2} ]( t- n) }{(2n)!} $$
and Gauss' formula of the same order for backward interpolation with respect to the nodes $ x _ {0} , x _ {0} - h, x _ {0} + h, \dots ,x _ {0} - nh, x _ {0} + nh $:
$$ G _ {2n} ( x _ {0} + th) = \ f _ {0} + f _ {-1/2 } ^ { 1 } t + f _ {0} ^ { 2 } \frac{t( t+ 1)}{2!} + \dots + $$
$$ + f _ {0} ^ { 2n } \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ]( t+ n) }{( 2n)! } . $$
Using the notation
$$ f _ {0} ^ { 2k- 1 } = \ \frac{1}{2} [ f _ {1/2} ^ { 2k- 1 } + f _ {- 1/2} ^ { 2k- 1 } ] , $$
Stirling's interpolation formula takes the form:
$$ L _ {2n} ( x) = L _ {2n} ( x _ {0} + th) = \ f _ {0} + tf _ {0} ^ { 1 } + \frac{t ^ {2} }{2!} f _ {0} ^ { 2 } + \dots + $$
$$ + \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( 2n- 1)!} f _ {0} ^ { 2n- 1 } + \frac{t( t ^ {2} - 1) \dots [ t ^ {2} -( n- 1) ^ {2} ] }{( 2n)! } f _ {0} ^ { 2n } . $$
For small $ t $, Stirling's interpolation formula is more exact than other interpolation formulas.
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
Comments
The central differences $ f _ {i+ 1/2 } ^ { 2m+ 1 } $ and $ f _ {i} ^ { 2m } $( $ m = 0, 1 \dots $ $ i = \dots, - 1, 0, 1, . . . $) are defined recursively from the (tabulated values) $ f _ {i} ^ { 0 } = f ( x _ {0} + ih) $ by the formulas
$$ f _ {i + 1/2 } ^ { 2m+ 1 } = \ f _ {i+} 1 ^ { 2m } - f _ {i} ^ { 2m } ; \ \ f _ {i} ^ { 2m } = \ f _ {i + 1/2 } ^ { 2m- 1 } - f _ {i - 1/2 } ^ { 2m - 1 } . $$
References
[a1] | F.B. Hildebrand, "Introduction to numerical analysis" , Dover, reprint (1987) pp. 139 |
Stirling interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stirling_interpolation_formula&oldid=48843