Difference between revisions of "Incomplete gamma-function"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(corrected several typos) |
||
Line 19: | Line 19: | ||
\int\limits _ { 0 } ^ { x } | \int\limits _ { 0 } ^ { x } | ||
− | e ^ {-} | + | e ^ {-t} t ^ {m-1} dt ,\ \ |
x \geq 0 ,\ m > 0 , | x \geq 0 ,\ m > 0 , | ||
$$ | $$ | ||
− | where $ \Gamma ( m) = \int _ {0} ^ \infty e ^ {-} | + | where $ \Gamma ( m) = \int _ {0} ^ \infty e ^ {-t} t ^ {m-1} dt $ |
is the [[Gamma-function|gamma-function]]. If $ n \geq 0 $ | is the [[Gamma-function|gamma-function]]. If $ n \geq 0 $ | ||
is an integer, then | is an integer, then | ||
Line 29: | Line 29: | ||
$$ | $$ | ||
I ( x , n+ 1 ) = \ | I ( x , n+ 1 ) = \ | ||
− | 1 - e ^ {-} | + | 1 - e ^ {-x} |
− | \sum _ { m= } | + | \sum _ { m= 0}^ { n } |
\frac{x ^ {m} }{m ! } | \frac{x ^ {m} }{m ! } | ||
Line 41: | Line 41: | ||
I ( x , m ) = \ | I ( x , m ) = \ | ||
− | \frac{e ^ {-} | + | \frac{e ^ {-x} x ^ {m} }{\Gamma ( m+ 1 ) } |
\left \{ | \left \{ | ||
1+ | 1+ | ||
− | \sum _ { k= } | + | \sum _ { k= 1}^\infty |
\frac{x ^ {k} }{( m+ 1 ) \dots ( m+ k ) } | \frac{x ^ {k} }{( m+ 1 ) \dots ( m+ k ) } | ||
Line 61: | Line 61: | ||
= \ | = \ | ||
1 - | 1 - | ||
− | \frac{x ^ {m} | + | \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m |
+ 1 ) } | + 1 ) } | ||
\left \{ | \left \{ | ||
Line 83: | Line 83: | ||
I ( x , m ) = 1 - | I ( x , m ) = 1 - | ||
− | \frac{x ^ {m-} | + | \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m) } |
\left \{ | \left \{ | ||
− | \sum _ { i= } | + | \sum _ { i= 0}^{ M- 1} |
\frac{( - 1 ) ^ {i} \Gamma ( 1- m+ i ) }{x ^ {i} \Gamma ( 1- m ) } | \frac{( - 1 ) ^ {i} \Gamma ( 1- m+ i ) }{x ^ {i} \Gamma ( 1- m ) } | ||
− | + O ( x | + | + O ( x^{-M} ) |
\right \} . | \right \} . | ||
$$ | $$ | ||
Line 98: | Line 98: | ||
$$ | $$ | ||
I ( x , m ) = \ | I ( x , m ) = \ | ||
− | \Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m ^ {- | + | \Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m ^ {-1/2} ) , |
$$ | $$ | ||
Line 107: | Line 107: | ||
\right ) ^ {1/3} - 1 + | \right ) ^ {1/3} - 1 + | ||
\frac{1}{9m} | \frac{1}{9m} | ||
− | \right ) \right ] + O ( m ^ {-} | + | \right ) \right ] + O ( m ^ {-1} ) , |
$$ | $$ | ||
Line 135: | Line 135: | ||
$$ | $$ | ||
− | \frac{\partial ^ {n+} | + | \frac{\partial ^ {n+1} }{\partial x ^ {n+1} } |
I ( x , n + \alpha ) = \ | I ( x , n + \alpha ) = \ | ||
Line 142: | Line 142: | ||
\frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) } | \frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) } | ||
− | x ^ {\alpha - 1 } e ^ {-} | + | x ^ {\alpha - 1 } e ^ {-x} L _ {n} ^ {( \alpha ) } ( x ) . |
$$ | $$ | ||
Line 163: | Line 163: | ||
\frac{1}{\Gamma ( a) } | \frac{1}{\Gamma ( a) } | ||
− | \int\limits _ { 0 } ^ { x } t ^ {a - 1 } e ^ {-} | + | \int\limits _ { 0 } ^ { x } t ^ {a - 1 } e ^ {-t} d t , |
$$ | $$ | ||
Line 169: | Line 169: | ||
Q ( a , x ) = | Q ( a , x ) = | ||
\frac{1}{\Gamma ( a) } | \frac{1}{\Gamma ( a) } | ||
− | \int\limits _ { x } ^ \infty t ^ {a - 1 } e ^ {-} | + | \int\limits _ { x } ^ \infty t ^ {a - 1 } e ^ {-t} d t , |
$$ | $$ | ||
Line 181: | Line 181: | ||
\frac{1}{\Gamma ( a) } | \frac{1}{\Gamma ( a) } | ||
− | x ^ {a} e ^ {-} | + | x ^ {a} e ^ {-x} \Psi ( 1 ; a + 1 ; x ) . |
$$ | $$ | ||
Latest revision as of 00:47, 31 December 2021
The function defined by the formula
$$ I ( x , m ) = \ \frac{1}{\Gamma ( m) } \int\limits _ { 0 } ^ { x } e ^ {-t} t ^ {m-1} dt ,\ \ x \geq 0 ,\ m > 0 , $$
where $ \Gamma ( m) = \int _ {0} ^ \infty e ^ {-t} t ^ {m-1} dt $ is the gamma-function. If $ n \geq 0 $ is an integer, then
$$ I ( x , n+ 1 ) = \ 1 - e ^ {-x} \sum _ { m= 0}^ { n } \frac{x ^ {m} }{m ! } . $$
Series representation:
$$ I ( x , m ) = \ \frac{e ^ {-x} x ^ {m} }{\Gamma ( m+ 1 ) } \left \{ 1+ \sum _ { k= 1}^\infty \frac{x ^ {k} }{( m+ 1 ) \dots ( m+ k ) } \right \} . $$
Continued fraction representation:
$$ I ( x , m ) = $$
$$ = \ 1 - \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m + 1 ) } \left \{ \frac{1 \mid }{\mid x } + \frac{1 - m \mid }{\mid 1 } + \frac{1 \mid }{\mid x } + \frac{2 - m \mid }{\mid 1 } + \frac{2 \mid }{\mid x } + \dots \right \} . $$
Asymptotic representation for large $ x $:
$$ I ( x , m ) = 1 - \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m) } \left \{ \sum _ { i= 0}^{ M- 1} \frac{( - 1 ) ^ {i} \Gamma ( 1- m+ i ) }{x ^ {i} \Gamma ( 1- m ) } + O ( x^{-M} ) \right \} . $$
Asymptotic representation for large $ m $:
$$ I ( x , m ) = \ \Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m ^ {-1/2} ) , $$
$$ I ( x , m ) = \Phi \left [ 3 \sqrt m \left ( \left ( \frac{x}{m} \right ) ^ {1/3} - 1 + \frac{1}{9m} \right ) \right ] + O ( m ^ {-1} ) , $$
where
$$ \Phi ( z) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { z } e ^ {- t ^ {2} / 2 } dt . $$
Connection with the confluent hypergeometric function:
$$ I ( x , m ) = \ \frac{x ^ {m} }{\Gamma ( m+ 1 ) } {} _ {1} F _ {1} ( m , m+ 1 ; - x ) . $$
Connection with the Laguerre polynomials $ L _ {n} ^ {( \alpha ) } ( x) $:
$$ \frac{\partial ^ {n+1} }{\partial x ^ {n+1} } I ( x , n + \alpha ) = \ ( - 1 ) ^ {n} n! \frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) } x ^ {\alpha - 1 } e ^ {-x} L _ {n} ^ {( \alpha ) } ( x ) . $$
Recurrence relation:
$$ m I ( x , m+ 1 ) + x I ( x , m- 1 ) = \ ( x+ m ) I ( x , m ) . $$
References
[1] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973) |
[2] | V.I. Pagurova, "Tables of the incomplete gamma-function" , Moscow (1963) (In Russian) |
Comments
The following notations are also used:
$$ P ( a , x ) = \frac{1}{\Gamma ( a) } \int\limits _ { 0 } ^ { x } t ^ {a - 1 } e ^ {-t} d t , $$
$$ Q ( a , x ) = \frac{1}{\Gamma ( a) } \int\limits _ { x } ^ \infty t ^ {a - 1 } e ^ {-t} d t , $$
with $ \mathop{\rm Re} a > 0 $, $ x \geq 0 $. The $ Q $- function is related to the confluent hypergeometric function:
$$ Q ( a , x ) = \frac{1}{\Gamma ( a) } x ^ {a} e ^ {-x} \Psi ( 1 ; a + 1 ; x ) . $$
New asymptotic expansions for both $ P ( a , x ) $ and $ Q ( a , x ) $ are given in [a1].
References
[a1] | N.M. Temme, "The asymptotic expansion of the incomplete gamma functions" SIAM J. Math. Anal. , 10 (1979) pp. 757–766 |
Incomplete gamma-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Incomplete_gamma-function&oldid=47326