Namespaces
Variants
Actions

Difference between revisions of "Riesz system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A concept in the theory of orthogonal systems (cf. [[Orthonormal system|Orthonormal system]]). Let a [[Complete system of functions|complete system of functions]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823101.png" /> be fixed in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823102.png" />. It is considered normalized, or, more generally, almost normalized, i.e. there are numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823104.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823105.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823106.png" />. Weakening the requirement concerning the orthogonality of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823107.png" /> one assumes that there exists a complete system of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823108.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r0823109.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231012.png" />. In particular, when the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231013.png" /> is orthonormal, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231014.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231015.png" />. If a series
+
{{TEX|done}}
 +
A concept in the theory of orthogonal systems (cf. [[Orthonormal system|Orthonormal system]]). Let a [[Complete system of functions|complete system of functions]] $\{\psi_n\}$ be fixed in the space $L_2=L_2(a,b)$. It is considered normalized, or, more generally, almost normalized, i.e. there are numbers $m>0$ and $M>0$ for which $m\leq\|\psi_n\|\leq M$ for all $n\in\mathbf N$. Weakening the requirement concerning the orthogonality of the system $\{\psi_n\}$ one assumes that there exists a complete system of functions $\{g_n\}$ in $L_2$ such that $(\psi_n,g_n)=1$, $(\psi_n,g_m)=0$ for all $n\neq m$. In particular, when the system $\{\psi_n\}$ is orthonormal, $g_n=\psi_n$ for all $n\in\mathbf N$. If a series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231016.png" /></td> </tr></table>
+
$$\sum_{n=1}^\infty a_n\psi_n$$
  
converges to a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231018.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231019.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231020.png" />. Thus it makes sense to call the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231021.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231022.png" />-th Fourier coefficient of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231023.png" /> with respect to the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231024.png" />. In the proofs of a number of theorems in the theory of orthogonal series, the [[Bessel inequality|Bessel inequality]] and the [[Riesz–Fischer theorem|Riesz–Fischer theorem]] are of great importance. In the general case these theorems are not valid, therefore one has to single out the special class of Riesz systems, i.e. systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231025.png" /> satisfying
+
converges to a function $f$ in $L_2$, then $a_n=(f,g_n)$ for all $n\in\mathbf N$. Thus it makes sense to call the number $a_n=(f,g_n)$ the $n$-th Fourier coefficient of the function $f$ with respect to the system $\{\psi_n\}$. In the proofs of a number of theorems in the theory of orthogonal series, the [[Bessel inequality|Bessel inequality]] and the [[Riesz–Fischer theorem|Riesz–Fischer theorem]] are of great importance. In the general case these theorems are not valid, therefore one has to single out the special class of Riesz systems, i.e. systems $\{\psi_n\}$ satisfying
  
1) for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231026.png" /> the series of the squares of the Fourier coefficients is absolutely convergent, i.e.
+
1) for any function $f$ the series of the squares of the Fourier coefficients is absolutely convergent, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231027.png" /></td> </tr></table>
+
$$\sum_{n=1}^\infty|(f,g_n)|^2<+\infty;$$
  
2) for any sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231028.png" /> there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231029.png" /> for which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231030.png" /> are its Fourier coefficients with respect to the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231031.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231032.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231033.png" />.
+
2) for any sequence of numbers $\{a_n\}\in l_2$ there exists a function $f$ for which the $a_n$ are its Fourier coefficients with respect to the system $\{\psi_n\}$, that is, $a_n=(f,g_n)$ for all $n\in\mathbf N$.
  
The first requirement on the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231034.png" /> replaces the Bessel inequality, the second the Riesz–Fischer theorem. N.K. Bari has proved (see [[#References|[2]]]) that a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231035.png" /> is a Riesz system if and only if there exists a continuous linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231036.png" />, invertible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231037.png" />, such that the system of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231038.png" /> is complete and orthonormal. Therefore, a Riesz system is also called a Riesz basis, equivalent to an orthonormal basis. Bari has indicated a convenient criterion for being a Riesz system. A complete system of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231039.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231040.png" /> is a Riesz system if and only if the [[Gram matrix|Gram matrix]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231041.png" /> determines a continuous invertible linear operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231042.png" />. Under an arbitrary permutation of the elements of a Riesz system one obtains again a Riesz system. Conversely, if a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231043.png" /> is still a basis after any permutation of its elements, then by normalizing it one obtains a Riesz system. A natural generalization of a Riesz system is obtained by replacing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231044.png" /> by the closure of the linear span of a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231045.png" /> with respect to the norm of the Hilbert space from which the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r082/r082310/r08231046.png" /> are taken (see [[#References|[4]]]).
+
The first requirement on the system $\{\psi_n\}$ replaces the Bessel inequality, the second the Riesz–Fischer theorem. N.K. Bari has proved (see [[#References|[2]]]) that a system $\{\psi_n\}$ is a Riesz system if and only if there exists a continuous linear operator $A$, invertible in $L_2$, such that the system of functions $\{A\psi_n\}$ is complete and orthonormal. Therefore, a Riesz system is also called a Riesz basis, equivalent to an orthonormal basis. Bari has indicated a convenient criterion for being a Riesz system. A complete system of functions $\{\psi_n\}$ in $L_2$ is a Riesz system if and only if the [[Gram matrix|Gram matrix]] $\|(\psi_n,\psi_m)\|$ determines a continuous invertible linear operator in $l_2$. Under an arbitrary permutation of the elements of a Riesz system one obtains again a Riesz system. Conversely, if a basis in $L_2$ is still a basis after any permutation of its elements, then by normalizing it one obtains a Riesz system. A natural generalization of a Riesz system is obtained by replacing $L_2$ by the [[linear closure]] of a system $\{\psi_n\}$ with respect to the norm of the Hilbert space from which the elements $\psi_n$ are taken (see [[#References|[4]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.K. Bari,  "Sur les bases dans l'espace de Hilbert"  ''Dokl. Akad. Nauk SSSR'' , '''54'''  (1946)  pp. 379–382</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. Bari,  "Biorthogonal systems and bases in Hilbert space"  ''Uchen. Zap. Moskov. Gos. Univ.'' , '''148''' :  4  (1951)  pp. 69–107  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.C. [I.Ts. Gokhberg] Gohberg,  M.G. Krein,  "Introduction to the theory of linear nonselfadjoint operators" , ''Transl. Math. Monogr.'' , '''18''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.F. Gaposhkin,  "Lacunary series and independent functions"  ''Russian Math. Surveys'' , '''21''' :  6  (1966)  pp. 1–82  ''Uspekhi Mat. Nauk'' , '''21''' :  6  (1966)  pp. 3–82</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.K. Bari,  "Sur les bases dans l'espace de Hilbert"  ''Dokl. Akad. Nauk SSSR'' , '''54'''  (1946)  pp. 379–382</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. Bari,  "Biorthogonal systems and bases in Hilbert space"  ''Uchen. Zap. Moskov. Gos. Univ.'' , '''148''' :  4  (1951)  pp. 69–107  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.C. [I.Ts. Gokhberg] Gohberg,  M.G. Krein,  "Introduction to the theory of linear nonselfadjoint operators" , ''Transl. Math. Monogr.'' , '''18''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.F. Gaposhkin,  "Lacunary series and independent functions"  ''Russian Math. Surveys'' , '''21''' :  6  (1966)  pp. 1–82  ''Uspekhi Mat. Nauk'' , '''21''' :  6  (1966)  pp. 3–82</TD></TR></table>

Latest revision as of 19:53, 27 February 2021

A concept in the theory of orthogonal systems (cf. Orthonormal system). Let a complete system of functions $\{\psi_n\}$ be fixed in the space $L_2=L_2(a,b)$. It is considered normalized, or, more generally, almost normalized, i.e. there are numbers $m>0$ and $M>0$ for which $m\leq\|\psi_n\|\leq M$ for all $n\in\mathbf N$. Weakening the requirement concerning the orthogonality of the system $\{\psi_n\}$ one assumes that there exists a complete system of functions $\{g_n\}$ in $L_2$ such that $(\psi_n,g_n)=1$, $(\psi_n,g_m)=0$ for all $n\neq m$. In particular, when the system $\{\psi_n\}$ is orthonormal, $g_n=\psi_n$ for all $n\in\mathbf N$. If a series

$$\sum_{n=1}^\infty a_n\psi_n$$

converges to a function $f$ in $L_2$, then $a_n=(f,g_n)$ for all $n\in\mathbf N$. Thus it makes sense to call the number $a_n=(f,g_n)$ the $n$-th Fourier coefficient of the function $f$ with respect to the system $\{\psi_n\}$. In the proofs of a number of theorems in the theory of orthogonal series, the Bessel inequality and the Riesz–Fischer theorem are of great importance. In the general case these theorems are not valid, therefore one has to single out the special class of Riesz systems, i.e. systems $\{\psi_n\}$ satisfying

1) for any function $f$ the series of the squares of the Fourier coefficients is absolutely convergent, i.e.

$$\sum_{n=1}^\infty|(f,g_n)|^2<+\infty;$$

2) for any sequence of numbers $\{a_n\}\in l_2$ there exists a function $f$ for which the $a_n$ are its Fourier coefficients with respect to the system $\{\psi_n\}$, that is, $a_n=(f,g_n)$ for all $n\in\mathbf N$.

The first requirement on the system $\{\psi_n\}$ replaces the Bessel inequality, the second the Riesz–Fischer theorem. N.K. Bari has proved (see [2]) that a system $\{\psi_n\}$ is a Riesz system if and only if there exists a continuous linear operator $A$, invertible in $L_2$, such that the system of functions $\{A\psi_n\}$ is complete and orthonormal. Therefore, a Riesz system is also called a Riesz basis, equivalent to an orthonormal basis. Bari has indicated a convenient criterion for being a Riesz system. A complete system of functions $\{\psi_n\}$ in $L_2$ is a Riesz system if and only if the Gram matrix $\|(\psi_n,\psi_m)\|$ determines a continuous invertible linear operator in $l_2$. Under an arbitrary permutation of the elements of a Riesz system one obtains again a Riesz system. Conversely, if a basis in $L_2$ is still a basis after any permutation of its elements, then by normalizing it one obtains a Riesz system. A natural generalization of a Riesz system is obtained by replacing $L_2$ by the linear closure of a system $\{\psi_n\}$ with respect to the norm of the Hilbert space from which the elements $\psi_n$ are taken (see [4]).

References

[1] N.K. Bari, "Sur les bases dans l'espace de Hilbert" Dokl. Akad. Nauk SSSR , 54 (1946) pp. 379–382
[2] N.K. Bari, "Biorthogonal systems and bases in Hilbert space" Uchen. Zap. Moskov. Gos. Univ. , 148 : 4 (1951) pp. 69–107 (In Russian)
[3] I.C. [I.Ts. Gokhberg] Gohberg, M.G. Krein, "Introduction to the theory of linear nonselfadjoint operators" , Transl. Math. Monogr. , 18 , Amer. Math. Soc. (1969) (Translated from Russian)
[4] V.F. Gaposhkin, "Lacunary series and independent functions" Russian Math. Surveys , 21 : 6 (1966) pp. 1–82 Uspekhi Mat. Nauk , 21 : 6 (1966) pp. 3–82
How to Cite This Entry:
Riesz system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_system&oldid=16931
This article was adapted from an original article by V.F. Emel'yanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article