Difference between revisions of "Ordinary differential equations, property C for"
m (AUTOMATIC EDIT (latexlist): Replaced 67 formulas out of 67 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
(fix tex) |
||
Line 9: | Line 9: | ||
Let | Let | ||
− | \begin{equation*} \ | + | \begin{equation*} \ell _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u, \end{equation*} |
\begin{equation*} m = 1,2 , x \in \mathbf{R} _ { + } : = [ 0 , \infty ), \end{equation*} | \begin{equation*} m = 1,2 , x \in \mathbf{R} _ { + } : = [ 0 , \infty ), \end{equation*} | ||
Line 19: | Line 19: | ||
Consider the problem | Consider the problem | ||
− | \begin{equation*} ( \ | + | \begin{equation*} ( \ell _ { m } - k ^ { 2 } ) f _ { m } = 0, \end{equation*} |
\begin{equation*} x \in \mathbf{R} _ { + } ,\; f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \;\text { as } x \rightarrow + \infty. \end{equation*} | \begin{equation*} x \in \mathbf{R} _ { + } ,\; f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \;\text { as } x \rightarrow + \infty. \end{equation*} | ||
Line 27: | Line 27: | ||
Define also the solutions to the problem | Define also the solutions to the problem | ||
− | \begin{equation*} \left( \ | + | \begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*} |
\begin{equation*} x \in \mathbf{R} _ { + } ,\, \varphi _ { m } ( 0 , k ) = 0 ,\, \varphi _ { m } ^ { \prime } ( 0 , k ) = 1, \end{equation*} | \begin{equation*} x \in \mathbf{R} _ { + } ,\, \varphi _ { m } ( 0 , k ) = 0 ,\, \varphi _ { m } ^ { \prime } ( 0 , k ) = 1, \end{equation*} | ||
Line 33: | Line 33: | ||
and to the problem | and to the problem | ||
− | \begin{equation*} \left( \ | + | \begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*} |
\begin{equation*} x \in {\bf R} _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0. \end{equation*} | \begin{equation*} x \in {\bf R} _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0. \end{equation*} | ||
Line 41: | Line 41: | ||
\begin{equation} \tag{a1} \int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation} | \begin{equation} \tag{a1} \int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation} | ||
− | If (a1) implies $f ( x ) \equiv 0$, then one says that the pair $\{ \ | + | If (a1) implies $f ( x ) \equiv 0$, then one says that the pair $\{ \ell_{1}, \ell_{2} \}$ has property $C _ { + }$. |
− | Let $b | + | Let $b > 0$ be an arbitrary fixed number, let $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ and assume |
\begin{equation} \tag{a2} \int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation} | \begin{equation} \tag{a2} \int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation} | ||
− | If (a2) implies $h ( x ) \equiv 0$, then one says that the pair $\{ | + | If (a2) implies $h ( x ) \equiv 0$, then one says that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { \varphi }$. |
Similarly one defines property $C _ { \psi }$. | Similarly one defines property $C _ { \psi }$. | ||
− | It is proved in [[#References|[a1]]] that the pair $\{ | + | It is proved in [[#References|[a1]]] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { + }$ if $q _ { m } \in L _ { 1,1 }$, $m = 1,2$. |
− | It is proved in [[#References|[a2]]] that the pair $\{ | + | It is proved in [[#References|[a2]]] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has properties $C _ { \varphi }$ and $C _ { \psi }$. |
− | However, if $b = \infty$, then, in general, property $C _ { \varphi }$ fails to hold for a pair $\{ | + | However, if $b = \infty$, then, in general, property $C _ { \varphi }$ fails to hold for a pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$. This means that there exist a function $h ( x ) \not\equiv 0$, $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$, and two potentials $q_1 , q _ { 2 } \in L _ { 1 ,1} $, such that (a1) holds for all $k > 0$. |
In [[#References|[a2]]] many applications of properties $C _ { + }$, $C _ { \varphi }$ and $C _ { \psi }$ to inverse problems are presented. | In [[#References|[a2]]] many applications of properties $C _ { + }$, $C _ { \varphi }$ and $C _ { \psi }$ to inverse problems are presented. | ||
Line 65: | Line 65: | ||
This problem was solved in [[#References|[a4]]], but in [[#References|[a1]]] and [[#References|[a2]]] a new approach to this and many other inverse problems is developed. This new approach is sketched below. | This problem was solved in [[#References|[a4]]], but in [[#References|[a1]]] and [[#References|[a2]]] a new approach to this and many other inverse problems is developed. This new approach is sketched below. | ||
− | Suppose that there are two potentials, $q _ { 1 } ( x )$ and $q_2 ( x )$, which generate the same data $I ( k )$. Subtract from the equation $( | + | Suppose that there are two potentials, $q _ { 1 } ( x )$ and $q_2 ( x )$, which generate the same data $I ( k )$. Subtract from the equation $( \ell _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ the equation $( \ell _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$, and denote $f _ { 1 } - f _ { 2 } : = f$, $q _ { 2 } - q _ { 1 } : = p ( x )$, to get $( \ell _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$. Multiply this equation by $f _ { 1 } ( x , k )$, integrate over $( 0 , \infty )$ and then by parts. The assumption |
\begin{equation*} I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k ) \end{equation*} | \begin{equation*} I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k ) \end{equation*} | ||
Line 74: | Line 74: | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> A.G. Ramm, "Property C for ODE and applications to inverse scattering" ''Z. Angew. Anal.'' , '''18''' : 2 (1999) pp. 331–348</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> A.G. Ramm, "Property C for ODE and applications to inverse problems" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , ''Operator Theory And Its Applications'' , ''Fields Inst. Commun.'' , '''25''' , Amer. Math. Soc. (2000) pp. 15–75</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> A.G. Ramm, "Inverse scattering problem with part of the fixed-energy phase shifts" ''Comm. Math. Phys.'' , '''207''' : 1 (1999) pp. 231–247</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> A.G. Ramm, "Recovery of the potential from $I$-function" ''Math. Rept. Acad. Sci. Canada'' , '''9''' (1987) pp. 177–182</td></tr></table> | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> A.G. Ramm, "Property C for ODE and applications to inverse scattering" ''Z. Angew. Anal.'' , '''18''' : 2 (1999) pp. 331–348</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> A.G. Ramm, "Property C for ODE and applications to inverse problems" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , ''Operator Theory And Its Applications'' , ''Fields Inst. Commun.'' , '''25''' , Amer. Math. Soc. (2000) pp. 15–75</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> A.G. Ramm, "Inverse scattering problem with part of the fixed-energy phase shifts" ''Comm. Math. Phys.'' , '''207''' : 1 (1999) pp. 231–247</td></tr> | ||
+ | <tr><td valign="top">[a4]</td> <td valign="top"> A.G. Ramm, "Recovery of the potential from $I$-function" ''Math. Rept. Acad. Sci. Canada'' , '''9''' (1987) pp. 177–182</td></tr> | ||
+ | </table> |
Revision as of 10:24, 13 January 2021
Let
\begin{equation*} \ell _ { m } u = \left( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) \right) u, \end{equation*}
\begin{equation*} m = 1,2 , x \in \mathbf{R} _ { + } : = [ 0 , \infty ), \end{equation*}
and let $q _ { m } ( x )$ be a real-valued function,
\begin{equation*} q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}. \end{equation*}
Consider the problem
\begin{equation*} ( \ell _ { m } - k ^ { 2 } ) f _ { m } = 0, \end{equation*}
\begin{equation*} x \in \mathbf{R} _ { + } ,\; f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \;\text { as } x \rightarrow + \infty. \end{equation*}
This problem has a unique solution, which is called the Jost function.
Define also the solutions to the problem
\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}
\begin{equation*} x \in \mathbf{R} _ { + } ,\, \varphi _ { m } ( 0 , k ) = 0 ,\, \varphi _ { m } ^ { \prime } ( 0 , k ) = 1, \end{equation*}
and to the problem
\begin{equation*} \left( \ell _ { m } - k ^ { 2 } \right) \varphi _ { m } ( x , k ) = 0, \end{equation*}
\begin{equation*} x \in {\bf R} _ { + } , \psi _ { m } ( 0 , k ) = 1 , \psi _ { m } ^ { \prime } ( 0 , k ) = 0. \end{equation*}
Assume $h ( x ) \in L ^ { 2 } ( \mathbf{R} _ { + } )$ and
\begin{equation} \tag{a1} \int _ { 0 } ^ { \infty } h ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}
If (a1) implies $f ( x ) \equiv 0$, then one says that the pair $\{ \ell_{1}, \ell_{2} \}$ has property $C _ { + }$.
Let $b > 0$ be an arbitrary fixed number, let $h ( x ) \in L ^ { 1 } ( \mathbf{R} _ { + } )$ and assume
\begin{equation} \tag{a2} \int _ { 0 } ^ { b } h ( x ) \varphi _ { 1 } ( x , k ) \varphi _ { 2 } ( x , k ) d x = 0 , \forall k > 0. \end{equation}
If (a2) implies $h ( x ) \equiv 0$, then one says that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { \varphi }$.
Similarly one defines property $C _ { \psi }$.
It is proved in [a1] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has property $C _ { + }$ if $q _ { m } \in L _ { 1,1 }$, $m = 1,2$.
It is proved in [a2] that the pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$ has properties $C _ { \varphi }$ and $C _ { \psi }$.
However, if $b = \infty$, then, in general, property $C _ { \varphi }$ fails to hold for a pair $\{ \ell _ { 1 } , \ell _ { 2 } \}$. This means that there exist a function $h ( x ) \not\equiv 0$, $h \in L ^ { 1 } ( \mathbf{R} _ { + } )$, and two potentials $q_1 , q _ { 2 } \in L _ { 1 ,1} $, such that (a1) holds for all $k > 0$.
In [a2] many applications of properties $C _ { + }$, $C _ { \varphi }$ and $C _ { \psi }$ to inverse problems are presented.
For instance, suppose that the $I$-function, defined as $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$, is known for all $k > 0$, $f ( k ) : = f ( 0 , k )$ and $f ( x , k )$ is the Jost function corresponding to a potential $q ( x ) \in L _ { 1,1 }$.
The function $I ( k )$ is known as the impedance function [a4], and it can be measured in some problems of electromagnetic probing of the Earth. The inverse problem (IP) is: Given $I ( k )$ for all $k > 0$, can one recover $q ( x )$ uniquely?
This problem was solved in [a4], but in [a1] and [a2] a new approach to this and many other inverse problems is developed. This new approach is sketched below.
Suppose that there are two potentials, $q _ { 1 } ( x )$ and $q_2 ( x )$, which generate the same data $I ( k )$. Subtract from the equation $( \ell _ { 1 } - k ^ { 2 } ) f _ { 1 } = 0$ the equation $( \ell _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$, and denote $f _ { 1 } - f _ { 2 } : = f$, $q _ { 2 } - q _ { 1 } : = p ( x )$, to get $( \ell _ { 1 } - k ^ { 2 } ) f = p f _ { 2 }$. Multiply this equation by $f _ { 1 } ( x , k )$, integrate over $( 0 , \infty )$ and then by parts. The assumption
\begin{equation*} I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k ) \end{equation*}
implies $\int _ { 0 } ^ { \infty } p ( x ) f _ { 1 } ( x , k ) f _ { 2 } ( x , k ) d x = 0$, $\forall k > 0$.
Using property $C _ { + }$ one concludes $p ( x ) \equiv 0$, that is, $q _ { 1 } ( x ) = q _ { 2 } ( x )$. This is a typical scheme for proving uniqueness theorems using property $C$.
References
[a1] | A.G. Ramm, "Property C for ODE and applications to inverse scattering" Z. Angew. Anal. , 18 : 2 (1999) pp. 331–348 |
[a2] | A.G. Ramm, "Property C for ODE and applications to inverse problems" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , Operator Theory And Its Applications , Fields Inst. Commun. , 25 , Amer. Math. Soc. (2000) pp. 15–75 |
[a3] | A.G. Ramm, "Inverse scattering problem with part of the fixed-energy phase shifts" Comm. Math. Phys. , 207 : 1 (1999) pp. 231–247 |
[a4] | A.G. Ramm, "Recovery of the potential from $I$-function" Math. Rept. Acad. Sci. Canada , 9 (1987) pp. 177–182 |
Ordinary differential equations, property C for. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ordinary_differential_equations,_property_C_for&oldid=50329