Namespaces
Variants
Actions

Difference between revisions of "Dirichlet polynomial"

From Encyclopedia of Mathematics
Jump to: navigation, search
(link to Dirichlet L-function)
m (AUTOMATIC EDIT (latexlist): Replaced 32 formulas out of 32 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202001.png" /> be a complex variable. A finite sum
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202002.png" /></td> </tr></table>
+
Out of 32 formulas, 32 were replaced by TEX code.-->
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202003.png" /> is a finite set of natural numbers, is called the Dirichlet polynomial with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202004.png" /> (complex numbers) and exponents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202005.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202006.png" /> is an increasing sequence of positive real numbers). In particular, Dirichlet polynomials are partial sums of corresponding [[Dirichlet series|Dirichlet series]].
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Let $\sigma + i t$ be a complex variable. A finite sum
  
Dirichlet polynomials are extensively used and studied in analytic and multiplicative number theory (cf. also [[Analytic number theory|Analytic number theory]]). Most zeta-functions (cf. also [[Zeta-function|Zeta-function]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202007.png" />-functions (cf. also [[Dirichlet L-function|Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202008.png" />-function]]), as well as their powers, can be approximated by Dirichlet polynomials, mostly with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d1202009.png" />. For example, uniformly for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020011.png" />, the equality
+
\begin{equation*} S _ { M } ( s ) = \sum _ { m \in M } a _ { m } e ^ { - \lambda_{m} s }, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020012.png" /></td> </tr></table>
+
where $M$ is a finite set of natural numbers, is called the Dirichlet polynomial with coefficients $a _ { m }$ (complex numbers) and exponents $\lambda _ { m }$ ($\{ \lambda _ { m } \}$ is an increasing sequence of positive real numbers). In particular, Dirichlet polynomials are partial sums of corresponding [[Dirichlet series|Dirichlet series]].
  
is valid for the [[Riemann zeta-function|Riemann zeta-function]] [[#References|[a6]]]. Dirichlet polynomials also occur in approximate functional equations of zeta-functions [[#References|[a2]]], [[#References|[a6]]], and have a great influence on their analytic properties. A sufficient condition [[#References|[a6]]] for the Riemann hypothesis (cf. [[Riemann hypotheses|Riemann hypotheses]]) is that the Dirichlet polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020013.png" /> should have no zeros in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020014.png" />.
+
Dirichlet polynomials are extensively used and studied in analytic and multiplicative number theory (cf. also [[Analytic number theory|Analytic number theory]]). Most zeta-functions (cf. also [[Zeta-function|Zeta-function]]) and $L$-functions (cf. also [[Dirichlet L-function|Dirichlet $L$-function]]), as well as their powers, can be approximated by Dirichlet polynomials, mostly with $\lambda _ { m } = \operatorname { log } m$. For example, uniformly for $\sigma \geq \sigma _ { 0 } &gt; 0$, $| t | \leq \pi x$, the equality
  
There exist inversion formulas for Dirichlet series (see, for example, [[#References|[a2]]]), which give an integral expression of the Dirichlet polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png" /> by a sum of corresponding Dirichlet series.
+
\begin{equation*} \zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } ) \end{equation*}
  
In applications, mean-value theorems for Dirichlet polynomials are very useful. The Montgomery–Vaughan theorem [[#References|[a5]]] is the best of them, and has, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020016.png" />, the form
+
is valid for the [[Riemann zeta-function|Riemann zeta-function]] [[#References|[a6]]]. Dirichlet polynomials also occur in approximate functional equations of zeta-functions [[#References|[a2]]], [[#References|[a6]]], and have a great influence on their analytic properties. A sufficient condition [[#References|[a6]]] for the Riemann hypothesis (cf. [[Riemann hypotheses|Riemann hypotheses]]) is that the Dirichlet polynomial $\sum _ {  { m } = 1 } ^ {  { n } } m ^ { - s }$ should have no zeros in $\sigma &gt; 1$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020017.png" /></td> </tr></table>
+
There exist inversion formulas for Dirichlet series (see, for example, [[#References|[a2]]]), which give an integral expression of the Dirichlet polynomial $p _ { n } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m } m ^ { - s }$ by a sum of corresponding Dirichlet series.
 +
 
 +
In applications, mean-value theorems for Dirichlet polynomials are very useful. The Montgomery–Vaughan theorem [[#References|[a5]]] is the best of them, and has, for $p _ { n } ( s )$, the form
 +
 
 +
\begin{equation*} \int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ). \end{equation*}
  
 
Transformation formulas for special Dirichlet polynomials were obtained by M. Jutila [[#References|[a3]]].
 
Transformation formulas for special Dirichlet polynomials were obtained by M. Jutila [[#References|[a3]]].
  
Dirichlet polynomials have a limit distribution in the sense of [[Weak convergence of probability measures|weak convergence of probability measures]]. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020018.png" /> be a region on the complex plane, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020019.png" /> denote the space of analytic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020020.png" /> equipped with the topology of [[Uniform convergence|uniform convergence]] on compacta, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020021.png" /> stand for the class of Borel sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020022.png" /> (cf. also [[Borel set|Borel set]]), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020023.png" /> be the [[Lebesgue measure|Lebesgue measure]] of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020024.png" />. Then [[#References|[a4]]] there exists a [[Probability measure|probability measure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020025.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020026.png" /> such that the measure
+
Dirichlet polynomials have a limit distribution in the sense of [[Weak convergence of probability measures|weak convergence of probability measures]]. For example, let $G$ be a region on the complex plane, let $H ( G )$ denote the space of analytic functions on $G$ equipped with the topology of [[Uniform convergence|uniform convergence]] on compacta, let $\mathcal{B} ( H ( G ) )$ stand for the class of Borel sets of $H ( G )$ (cf. also [[Borel set|Borel set]]), and let $\operatorname{meas} \, \{ A \}$ be the [[Lebesgue measure|Lebesgue measure]] of the set $A$. Then [[#References|[a4]]] there exists a [[Probability measure|probability measure]] $P$ on $( H ( G ) , \mathcal{B} ( H ( G ) ) )$ such that the measure
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020027.png" /></td> </tr></table>
+
\begin{equation*} \frac { 1 } { T } \text { meas } \{ \tau \in [ 0 , T ] : p _ { n } ( s + i \tau ) \in A \}, \end{equation*}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020028.png" />, converges weakly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020029.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020030.png" />.
+
$A \in \mathcal{B} ( H ( G ) )$, converges weakly to $P$ as $T \rightarrow \infty$.
  
Dirichlet polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020031.png" /> (with arbitrary real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020032.png" />) play an important role in the theory of almost-periodic functions (cf. also [[Almost-periodic function|Almost-periodic function]]) [[#References|[a1]]].
+
Dirichlet polynomials $S _ { M } ( i t )$ (with arbitrary real numbers $\lambda _ { m }$) play an important role in the theory of almost-periodic functions (cf. also [[Almost-periodic function|Almost-periodic function]]) [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Ivič,  "The Riemann zeta-function" , Wiley–Interscience  (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Jutila,  "Transformation formulae for Dirichlet polynomials"  ''J. Number Th.'' , '''18''' :  2  (1984)  pp. 135–156</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Laurinčikas,  "Limit theorems for the Riemann zeta-function" , Kluwer Acad. Publ.  (1996)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  H.L. Montgomery,  R.C. Vaughan,  "Hilbert's inequality"  ''J. London Math. Soc.'' , '''8''' :  2  (1974)  pp. 73–82</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  E.C. Titchmarsh,  "The theory of the Riemann zeta-function" , Clarendon Press  (1986)  (Edition: Second)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Besicovitch,  "Almost periodic functions" , Cambridge Univ. Press  (1932)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  A. Ivič,  "The Riemann zeta-function" , Wiley–Interscience  (1985)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  M. Jutila,  "Transformation formulae for Dirichlet polynomials"  ''J. Number Th.'' , '''18''' :  2  (1984)  pp. 135–156</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A. Laurinčikas,  "Limit theorems for the Riemann zeta-function" , Kluwer Acad. Publ.  (1996)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  H.L. Montgomery,  R.C. Vaughan,  "Hilbert's inequality"  ''J. London Math. Soc.'' , '''8''' :  2  (1974)  pp. 73–82</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  E.C. Titchmarsh,  "The theory of the Riemann zeta-function" , Clarendon Press  (1986)  (Edition: Second)</td></tr></table>

Latest revision as of 17:03, 1 July 2020

Let $\sigma + i t$ be a complex variable. A finite sum

\begin{equation*} S _ { M } ( s ) = \sum _ { m \in M } a _ { m } e ^ { - \lambda_{m} s }, \end{equation*}

where $M$ is a finite set of natural numbers, is called the Dirichlet polynomial with coefficients $a _ { m }$ (complex numbers) and exponents $\lambda _ { m }$ ($\{ \lambda _ { m } \}$ is an increasing sequence of positive real numbers). In particular, Dirichlet polynomials are partial sums of corresponding Dirichlet series.

Dirichlet polynomials are extensively used and studied in analytic and multiplicative number theory (cf. also Analytic number theory). Most zeta-functions (cf. also Zeta-function) and $L$-functions (cf. also Dirichlet $L$-function), as well as their powers, can be approximated by Dirichlet polynomials, mostly with $\lambda _ { m } = \operatorname { log } m$. For example, uniformly for $\sigma \geq \sigma _ { 0 } > 0$, $| t | \leq \pi x$, the equality

\begin{equation*} \zeta ( s ) = \sum _ { m \leq x } m ^ { - s } + \frac { x ^ { 1 - s } } { s - 1 } + O ( x ^ { - \sigma } ) \end{equation*}

is valid for the Riemann zeta-function [a6]. Dirichlet polynomials also occur in approximate functional equations of zeta-functions [a2], [a6], and have a great influence on their analytic properties. A sufficient condition [a6] for the Riemann hypothesis (cf. Riemann hypotheses) is that the Dirichlet polynomial $\sum _ { { m } = 1 } ^ { { n } } m ^ { - s }$ should have no zeros in $\sigma > 1$.

There exist inversion formulas for Dirichlet series (see, for example, [a2]), which give an integral expression of the Dirichlet polynomial $p _ { n } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m } m ^ { - s }$ by a sum of corresponding Dirichlet series.

In applications, mean-value theorems for Dirichlet polynomials are very useful. The Montgomery–Vaughan theorem [a5] is the best of them, and has, for $p _ { n } ( s )$, the form

\begin{equation*} \int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ). \end{equation*}

Transformation formulas for special Dirichlet polynomials were obtained by M. Jutila [a3].

Dirichlet polynomials have a limit distribution in the sense of weak convergence of probability measures. For example, let $G$ be a region on the complex plane, let $H ( G )$ denote the space of analytic functions on $G$ equipped with the topology of uniform convergence on compacta, let $\mathcal{B} ( H ( G ) )$ stand for the class of Borel sets of $H ( G )$ (cf. also Borel set), and let $\operatorname{meas} \, \{ A \}$ be the Lebesgue measure of the set $A$. Then [a4] there exists a probability measure $P$ on $( H ( G ) , \mathcal{B} ( H ( G ) ) )$ such that the measure

\begin{equation*} \frac { 1 } { T } \text { meas } \{ \tau \in [ 0 , T ] : p _ { n } ( s + i \tau ) \in A \}, \end{equation*}

$A \in \mathcal{B} ( H ( G ) )$, converges weakly to $P$ as $T \rightarrow \infty$.

Dirichlet polynomials $S _ { M } ( i t )$ (with arbitrary real numbers $\lambda _ { m }$) play an important role in the theory of almost-periodic functions (cf. also Almost-periodic function) [a1].

References

[a1] A. Besicovitch, "Almost periodic functions" , Cambridge Univ. Press (1932)
[a2] A. Ivič, "The Riemann zeta-function" , Wiley–Interscience (1985)
[a3] M. Jutila, "Transformation formulae for Dirichlet polynomials" J. Number Th. , 18 : 2 (1984) pp. 135–156
[a4] A. Laurinčikas, "Limit theorems for the Riemann zeta-function" , Kluwer Acad. Publ. (1996)
[a5] H.L. Montgomery, R.C. Vaughan, "Hilbert's inequality" J. London Math. Soc. , 8 : 2 (1974) pp. 73–82
[a6] E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Clarendon Press (1986) (Edition: Second)
How to Cite This Entry:
Dirichlet polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_polynomial&oldid=36171
This article was adapted from an original article by A. Laurinčikas (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article