Namespaces
Variants
Actions

Difference between revisions of "Fourier pseudo-spectral method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 40 formulas out of 44 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 44 formulas, 40 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
A type of trigonometric pseudo-spectral method (cf. [[Trigonometric pseudo-spectral methods|Trigonometric pseudo-spectral methods]]) used to solve differential and integral equations. See also [[Chebyshev pseudo-spectral method|Chebyshev pseudo-spectral method]].
 
A type of trigonometric pseudo-spectral method (cf. [[Trigonometric pseudo-spectral methods|Trigonometric pseudo-spectral methods]]) used to solve differential and integral equations. See also [[Chebyshev pseudo-spectral method|Chebyshev pseudo-spectral method]].
  
 
The Fourier pseudo-spectral method is used for problems in which there is a natural periodicity. In multi-dimensional problems it should be used only in those directions with periodic boundary conditions. In non-periodic directions, Chebyshev methods, finite element or difference methods of high order should be used.
 
The Fourier pseudo-spectral method is used for problems in which there is a natural periodicity. In multi-dimensional problems it should be used only in those directions with periodic boundary conditions. In non-periodic directions, Chebyshev methods, finite element or difference methods of high order should be used.
  
Suppose the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301901.png" /> is to be solved where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301902.png" /> is a [[Differential operator|differential operator]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301903.png" /> is a given periodic function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301904.png" /> is an unknown periodic function (period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301905.png" />). In the Fourier pseudo-spectral method, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301906.png" /> is approximated by a [[Trigonometric polynomial|trigonometric polynomial]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301907.png" /> that interpolates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301908.png" /> at equally spaced points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019010.png" />.
+
Suppose the equation $L u = f$ is to be solved where $L$ is a [[Differential operator|differential operator]], $f$ is a given periodic function and $u$ is an unknown periodic function (period $2 \pi$). In the Fourier pseudo-spectral method, the solution $u$ is approximated by a [[Trigonometric polynomial|trigonometric polynomial]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f1301907.png"/> that interpolates $u$ at equally spaced points $x _ { j } = \pi j / N$, $j = 0 , \ldots , 2 N - 1$.
  
The Lagrange interpolation polynomial (cf. also [[Lagrange interpolation formula|Lagrange interpolation formula]]) has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019012.png" /> is the Cardinal function, having the form
+
The Lagrange interpolation polynomial (cf. also [[Lagrange interpolation formula|Lagrange interpolation formula]]) has the form $P _ { N } u = \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) C _ { j } ( x )$, where $C_{j}$ is the Cardinal function, having the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019013.png" /></td> </tr></table>
+
\begin{equation*} \frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }. \end{equation*}
  
An equivalent way of defining the interpolating polynomial is by the discrete Fourier transform: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019014.png" />, where the Fourier coefficients are
+
An equivalent way of defining the interpolating polynomial is by the discrete Fourier transform: $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$, where the Fourier coefficients are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019015.png" /></td> </tr></table>
+
\begin{equation*} a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } }, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019016.png" /></td> </tr></table>
+
\begin{equation*} c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}. \end{equation*}
  
In the Lagrange polynomial or  "grid-point representation" , the problem can be written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019018.png" /> The form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019019.png" /> can be found through differentiation of the Cardinal function: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019020.png" />,
+
In the Lagrange polynomial or  "grid-point representation" , the problem can be written as $L _ { i , j } u _ { j } = f _ { i }$, where $L _ { i ,\, j } = L C _ { j } ( x ) |_ { x = x _ { i } }$ The form of $L_{i ,\, j}$ can be found through differentiation of the Cardinal function: $C _ { j } ( x _ { i } ) = \delta _ { i , j }$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019021.png" /></td> </tr></table>
+
\begin{equation*} \frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } &amp; { \text { for } i = j, } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } &amp; { \text { for } i \neq j, } \end{array} \right. \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019022.png" /></td> </tr></table>
+
\begin{equation*} \frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } &amp; { \text { for } i = j, } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } &amp; { \text { for } i \neq j, } \end{array} \right. \end{equation*}
  
to give a few. The derivative matrices are full and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019023.png" /> operations are required for evaluation.
+
to give a few. The derivative matrices are full and $O ( N ^ { 2 } )$ operations are required for evaluation.
  
 
The problem can also be formulated using the spectral coefficient representation. Derivatives are found through differentiation of the discrete Fourier series, for example,
 
The problem can also be formulated using the spectral coefficient representation. Derivatives are found through differentiation of the discrete Fourier series, for example,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019024.png" /></td> </tr></table>
+
\begin{equation*} \left( \frac { d } { d x } \right) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }, \end{equation*}
  
and have an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019025.png" /> operation count. If the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019026.png" /> is non-linear or has non-constant coefficients multiplying the derivatives, evaluation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019027.png" /> is much more complicated.
+
and have an $O ( N )$ operation count. If the operator $L$ is non-linear or has non-constant coefficients multiplying the derivatives, evaluation of $L$ is much more complicated.
  
The fast Fourier transform provides a way of switching between grid-point and spectral representations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019028.png" /> operations, instead of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019029.png" /> using the definitions above. Derivatives can be accomplished in spectral space and multiplication of non-constant coefficients or evaluation of non-linear terms can be accomplished in grid point space — each with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019030.png" /> operations.
+
The fast Fourier transform provides a way of switching between grid-point and spectral representations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019028.png"/> operations, instead of the $O ( N ^ { 2 } )$ using the definitions above. Derivatives can be accomplished in spectral space and multiplication of non-constant coefficients or evaluation of non-linear terms can be accomplished in grid point space — each with $O ( N )$ operations.
  
 
Particularly for time-dependent problems in which boundary value problems must be solved at each time step, it is very important to minimize operation counts by taking full advantage of each representation and the fast transformation between representations.
 
Particularly for time-dependent problems in which boundary value problems must be solved at each time step, it is very important to minimize operation counts by taking full advantage of each representation and the fast transformation between representations.
Line 35: Line 43:
 
As an example, consider the operator
 
As an example, consider the operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019031.png" /></td> </tr></table>
+
\begin{equation*} L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 } \end{equation*}
  
for the time-dependent problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019032.png" />. Suppose at a particular time the spectral coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019034.png" />, are known. To compute <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019035.png" />, first the spectral coefficients of the first- and second-order derivatives are found: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019037.png" />. Then both of these arrays are transformed into their grid point representation using a fast Fourier transformation. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019038.png" /> can be evaluated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019039.png" /> operations. The complete evaluation of the operator is done in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019040.png" /> operations rather than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019041.png" /> if done completely in one space. This property becomes even more critical for multi-dimensional problems; the operation counts are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019042.png" /> versus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019043.png" /> for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019044.png" />-dimensional problem.
+
for the time-dependent problem $d u / d t = L u$. Suppose at a particular time the spectral coefficients $a _ { j }$, $j = 0 , \dots , N - 1$, are known. To compute $Lu$, first the spectral coefficients of the first- and second-order derivatives are found: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019036.png"/> and $- j ^ { 2 } a_j$. Then both of these arrays are transformed into their grid point representation using a fast Fourier transformation. Then $Lu$ can be evaluated in $O ( N )$ operations. The complete evaluation of the operator is done in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019040.png"/> operations rather than $O ( N ^ { 2 } )$ if done completely in one space. This property becomes even more critical for multi-dimensional problems; the operation counts are $O ( N ^ { d } \operatorname { log } N )$ versus $O ( N ^ { 2 d } )$ for a $d$-dimensional problem.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.P. Boyd,  "Chebyshev and Fourier spectral methods" , Dover  (2000)  (pdf version: http://www-personal.engin.umich.edu/~jpboyd/book_spectral2000.html)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Gottlieb,  S.A. Orszag,  "Numerical analysis of spectral methods: Theory and applications" , SIAM  (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. Canuto,  M.Y. Hussaini,  A. Quarteroni,  T.A. Zang,  "Spectral methods in fluid dynamics" , Springer  (1987)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. Gottlieb,  M.Y. Hussaini,  S.A. Orszag,  "Theory and application of spectral methods"  R.G. Voigt (ed.)  D. Gottlieb (ed.)  M.Y. Hussaini (ed.) , ''Spectral Methods for Partial Differential Equations'' , SIAM  (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Fornberg,  "A practical guide to pseudospectral methods" , ''Cambridge Monographs Appl. Comput. Math.'' , '''1''' , Cambridge Univ. Press  (1996)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  J.P. Boyd,  "Chebyshev and Fourier spectral methods" , Dover  (2000)  (pdf version: http://www-personal.engin.umich.edu/~jpboyd/book_spectral2000.html)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  D. Gottlieb,  S.A. Orszag,  "Numerical analysis of spectral methods: Theory and applications" , SIAM  (1977)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  C. Canuto,  M.Y. Hussaini,  A. Quarteroni,  T.A. Zang,  "Spectral methods in fluid dynamics" , Springer  (1987)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  D. Gottlieb,  M.Y. Hussaini,  S.A. Orszag,  "Theory and application of spectral methods"  R.G. Voigt (ed.)  D. Gottlieb (ed.)  M.Y. Hussaini (ed.) , ''Spectral Methods for Partial Differential Equations'' , SIAM  (1984)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  B. Fornberg,  "A practical guide to pseudospectral methods" , ''Cambridge Monographs Appl. Comput. Math.'' , '''1''' , Cambridge Univ. Press  (1996)</td></tr></table>

Revision as of 17:02, 1 July 2020

A type of trigonometric pseudo-spectral method (cf. Trigonometric pseudo-spectral methods) used to solve differential and integral equations. See also Chebyshev pseudo-spectral method.

The Fourier pseudo-spectral method is used for problems in which there is a natural periodicity. In multi-dimensional problems it should be used only in those directions with periodic boundary conditions. In non-periodic directions, Chebyshev methods, finite element or difference methods of high order should be used.

Suppose the equation $L u = f$ is to be solved where $L$ is a differential operator, $f$ is a given periodic function and $u$ is an unknown periodic function (period $2 \pi$). In the Fourier pseudo-spectral method, the solution $u$ is approximated by a trigonometric polynomial that interpolates $u$ at equally spaced points $x _ { j } = \pi j / N$, $j = 0 , \ldots , 2 N - 1$.

The Lagrange interpolation polynomial (cf. also Lagrange interpolation formula) has the form $P _ { N } u = \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) C _ { j } ( x )$, where $C_{j}$ is the Cardinal function, having the form

\begin{equation*} \frac { 1 } { 2 N } \operatorname { sin } N ( x - x _ { j } ) \operatorname { cot } \frac { ( x - x _ { j } ) } { 2 }. \end{equation*}

An equivalent way of defining the interpolating polynomial is by the discrete Fourier transform: $P _ { N } u = \sum _ { k = - N } ^ { N } a _ { k } e ^ { i k x }$, where the Fourier coefficients are

\begin{equation*} a _ { k } = \frac { 1 } { 2 N c _ { k } } \sum _ { j = 0 } ^ { 2 N - 1 } u ( x _ { j } ) e ^ { - i k x _ { j } }, \end{equation*}

\begin{equation*} c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}. \end{equation*}

In the Lagrange polynomial or "grid-point representation" , the problem can be written as $L _ { i , j } u _ { j } = f _ { i }$, where $L _ { i ,\, j } = L C _ { j } ( x ) |_ { x = x _ { i } }$ The form of $L_{i ,\, j}$ can be found through differentiation of the Cardinal function: $C _ { j } ( x _ { i } ) = \delta _ { i , j }$,

\begin{equation*} \frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j, } \end{array} \right. \end{equation*}

\begin{equation*} \frac { d ^ { 2 } C _ { j } } { d x ^ { 2 } } ( x _ { i } ) = \left\{ \begin{array} { l l } { - \frac { 2 N ^ { 2 } + 1 } { 6 } } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } \frac { ( - 1 ) ^ { i + j + 1 } } { \operatorname { sin } ^ { 2 } \frac { x _ { i } - x _ { j } } { 2 } } } & { \text { for } i \neq j, } \end{array} \right. \end{equation*}

to give a few. The derivative matrices are full and $O ( N ^ { 2 } )$ operations are required for evaluation.

The problem can also be formulated using the spectral coefficient representation. Derivatives are found through differentiation of the discrete Fourier series, for example,

\begin{equation*} \left( \frac { d } { d x } \right) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }, \end{equation*}

and have an $O ( N )$ operation count. If the operator $L$ is non-linear or has non-constant coefficients multiplying the derivatives, evaluation of $L$ is much more complicated.

The fast Fourier transform provides a way of switching between grid-point and spectral representations in operations, instead of the $O ( N ^ { 2 } )$ using the definitions above. Derivatives can be accomplished in spectral space and multiplication of non-constant coefficients or evaluation of non-linear terms can be accomplished in grid point space — each with $O ( N )$ operations.

Particularly for time-dependent problems in which boundary value problems must be solved at each time step, it is very important to minimize operation counts by taking full advantage of each representation and the fast transformation between representations.

As an example, consider the operator

\begin{equation*} L u = \operatorname { sin } ( x ) \frac { d ^ { 2 } u } { d x ^ { 2 } } - ( \frac { d u } { d x } ) ^ { 2 } \end{equation*}

for the time-dependent problem $d u / d t = L u$. Suppose at a particular time the spectral coefficients $a _ { j }$, $j = 0 , \dots , N - 1$, are known. To compute $Lu$, first the spectral coefficients of the first- and second-order derivatives are found: and $- j ^ { 2 } a_j$. Then both of these arrays are transformed into their grid point representation using a fast Fourier transformation. Then $Lu$ can be evaluated in $O ( N )$ operations. The complete evaluation of the operator is done in operations rather than $O ( N ^ { 2 } )$ if done completely in one space. This property becomes even more critical for multi-dimensional problems; the operation counts are $O ( N ^ { d } \operatorname { log } N )$ versus $O ( N ^ { 2 d } )$ for a $d$-dimensional problem.

References

[a1] J.P. Boyd, "Chebyshev and Fourier spectral methods" , Dover (2000) (pdf version: http://www-personal.engin.umich.edu/~jpboyd/book_spectral2000.html)
[a2] D. Gottlieb, S.A. Orszag, "Numerical analysis of spectral methods: Theory and applications" , SIAM (1977)
[a3] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, "Spectral methods in fluid dynamics" , Springer (1987)
[a4] D. Gottlieb, M.Y. Hussaini, S.A. Orszag, "Theory and application of spectral methods" R.G. Voigt (ed.) D. Gottlieb (ed.) M.Y. Hussaini (ed.) , Spectral Methods for Partial Differential Equations , SIAM (1984)
[a5] B. Fornberg, "A practical guide to pseudospectral methods" , Cambridge Monographs Appl. Comput. Math. , 1 , Cambridge Univ. Press (1996)
How to Cite This Entry:
Fourier pseudo-spectral method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier_pseudo-spectral_method&oldid=14397
This article was adapted from an original article by Richard B. Pelz (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article