Namespaces
Variants
Actions

Difference between revisions of "Mean-value characterization"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 164 formulas out of 167 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 167 formulas, 164 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
==Harmonic functions.==
 
==Harmonic functions.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301401.png" /> denote the sphere of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301402.png" /> and centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301403.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301404.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301405.png" /> be the normalized [[Lebesgue measure|Lebesgue measure]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301406.png" />. One version of the classical converse of Gauss' mean-value theorem for harmonic functions asserts that a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301407.png" /> which satisfies
+
Let $S ( x , r )$ denote the sphere of radius $r$ and centre $x$ in ${\bf R} ^ { n }$ and let $d \sigma _ { r }$ be the normalized [[Lebesgue measure|Lebesgue measure]] on $S ( x , r )$. One version of the classical converse of Gauss' mean-value theorem for harmonic functions asserts that a function $f \in C ( R ^ { n } )$ which satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301408.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} \int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + }, \end{equation}
  
is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m1301409.png" /> (cf. also [[Harmonic function|Harmonic function]]). In fact, one need only require that (a1) holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014011.png" /> is an arbitrary positive function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014012.png" />. A corresponding  "local"  result holds for continuous functions defined on an arbitrary domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014013.png" />.
+
is harmonic in ${\bf R} ^ { n }$ (cf. also [[Harmonic function|Harmonic function]]). In fact, one need only require that (a1) holds for $0 &lt; r &lt; \rho ( x )$, where $\rho$ is an arbitrary positive function of $x$. A corresponding  "local"  result holds for continuous functions defined on an arbitrary domain in ${\bf R} ^ { n }$.
  
Remarkably, for the harmonicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014014.png" /> it suffices that (a1) holds only for two distinct values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014015.png" /> (and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014016.png" />), so long as the radii are not related in a special way. Specifically, let
+
Remarkably, for the harmonicity of $f$ it suffices that (a1) holds only for two distinct values of $r$ (and all $x$), so long as the radii are not related in a special way. Specifically, let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014017.png" /></td> </tr></table>
+
\begin{equation*} j _ { n } ( \zeta ) = \Gamma \left( \frac { n } { 2 } \right) \left( \frac { 2 } { \zeta } \right) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ), \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014018.png" /> is the Bessel function of the first kind of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014019.png" /> (cf. also [[Bessel functions|Bessel functions]]), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014020.png" /> be the set of positive quotients of zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014021.png" />. J. Delsarte proved that if (a1) holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014025.png" /> is harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014026.png" /> [[#References|[a11]]], cf. [[#References|[a20]]]. (In fact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014027.png" />, so any two distinct radii are sufficient in dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014028.png" />.) In [[#References|[a10]]], Delsarte's theorem is extended to non-compact irreducible symmetric spaces of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014029.png" />. There is also a local version of this result [[#References|[a9]]], [[#References|[a21]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014030.png" /> be the ball of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014031.png" /> centred at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014032.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014033.png" />. Now, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014034.png" /> satisfies (a1) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014035.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014036.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014037.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014038.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014039.png" /> is harmonic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014040.png" /> so long as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014041.png" />.
+
where $J _ { k }$ is the Bessel function of the first kind of order $k$ (cf. also [[Bessel functions|Bessel functions]]), and let $H _ { n }$ be the set of positive quotients of zeros of $j _ { n } ( \zeta ) - 1$. J. Delsarte proved that if (a1) holds for $r = r _{1}$ and $r = r_2$ and $r _ { 1 } / r _ { 2 } \notin H _ { n}$, then $f$ is harmonic in ${\bf R} ^ { n }$ [[#References|[a11]]], cf. [[#References|[a20]]]. (In fact, $H _ { 3 } = \{ 1 \}$, so any two distinct radii are sufficient in dimension $3$.) In [[#References|[a10]]], Delsarte's theorem is extended to non-compact irreducible symmetric spaces of rank $1$. There is also a local version of this result [[#References|[a9]]], [[#References|[a21]]]. Let $B _ { R }$ be the ball of radius $R$ centred at $0$ in ${\bf R} ^ { n }$. Now, if $f \in C ( B _ { R } )$ satisfies (a1) for $r = r _ { 1 } , r _ { 2 }$ ($r _ { 1 } / r _ { 2 } \notin H _ { n}$) and $x$ such that $| x | + r_j &lt; R$, then $f$ is harmonic on $B _ { R }$ so long as $r _ { 1 } + r _ { 2 } &lt; R$.
  
In this connection, one should also mention Littlewood's one-circle problem, solved by W. Hansen and N. Nadirashvili [[#References|[a14]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014042.png" /> be a bounded continuous function on the open unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014043.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014044.png" />. Suppose that for each point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014045.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014046.png" /> such that the mean-value condition of (a1) holds. Must <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014047.png" /> be harmonic? The answer turns out to be  "no"  [[#References|[a14]]]. On the other hand, the one-radius condition obtained by replacing the peripheral mean in (a1) by the (areal) average over the disc of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014048.png" /> does imply harmonicity [[#References|[a13]]]. This last result extends to functions defined on arbitrary bounded domains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014049.png" /> (and many unbounded domains as well); one can also weaken the boundedness assumption on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014050.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014051.png" /> for some positive harmonic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014052.png" />. For a survey of these and related results, see [[#References|[a12]]].
+
In this connection, one should also mention Littlewood's one-circle problem, solved by W. Hansen and N. Nadirashvili [[#References|[a14]]]. Let $f$ be a bounded continuous function on the open unit disc $U$ in $\mathbf{R} ^ { 2 }$. Suppose that for each point in $U$ there exists an $r = r ( x )$ such that the mean-value condition of (a1) holds. Must $f$ be harmonic? The answer turns out to be  "no"  [[#References|[a14]]]. On the other hand, the one-radius condition obtained by replacing the peripheral mean in (a1) by the (areal) average over the disc of radius $r ( x )$ does imply harmonicity [[#References|[a13]]]. This last result extends to functions defined on arbitrary bounded domains in ${\bf R} ^ { n }$ (and many unbounded domains as well); one can also weaken the boundedness assumption on $f$ to $| f | &lt; h$ for some positive harmonic function $h$. For a survey of these and related results, see [[#References|[a12]]].
  
Interesting new phenomena arise when one allows the integration to extend over the full space on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014053.png" /> is defined. Consider, for instance, functions integrable with respect to the (normalized) Lebesgue measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014054.png" /> on the unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014055.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014056.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014057.png" /> is harmonic with respect to the invariant Laplacian [[#References|[a17]]], 4.1, then
+
Interesting new phenomena arise when one allows the integration to extend over the full space on which $f$ is defined. Consider, for instance, functions integrable with respect to the (normalized) Lebesgue measure $m$ on the unit ball $B$ in $\mathbf{C} ^ { n }$. If $f$ is harmonic with respect to the invariant Laplacian [[#References|[a17]]], 4.1, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014058.png" /></td> </tr></table>
+
\begin{equation*} \int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) ) \end{equation*}
  
for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014059.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014060.png" />. The converse holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014061.png" /> [[#References|[a1]]], cf. [[#References|[a7]]] and, for a Euclidean analogue, [[#References|[a6]]]. Asymptotic mean-value conditions for (non-integrable) functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014062.png" /> are studied in [[#References|[a8]]]. Finally, for a detailed overview of the whole subject, see [[#References|[a15]]].
+
for every $\psi$ in $\operatorname{Aut}( B )$. The converse holds if and only if $n &lt; 12$ [[#References|[a1]]], cf. [[#References|[a7]]] and, for a Euclidean analogue, [[#References|[a6]]]. Asymptotic mean-value conditions for (non-integrable) functions on ${\bf R} ^ { n }$ are studied in [[#References|[a8]]]. Finally, for a detailed overview of the whole subject, see [[#References|[a15]]].
  
 
===Generalization.===
 
===Generalization.===
The extent to which mean-value theorems and their converses generalize to differential equations other than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014063.png" /> is explored in [[#References|[a22]]]. There it is shown that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014064.png" /> is a homogeneous polynomial, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014065.png" /> is a (weak) solution of the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014066.png" /> if and only if it satisfies the generalized mean-value condition
+
The extent to which mean-value theorems and their converses generalize to differential equations other than $\Delta u = 0$ is explored in [[#References|[a22]]]. There it is shown that if $P ( \xi _ { 1 } , \dots , \xi _ { n } )$ is a homogeneous polynomial, then $u \in C ( \mathbf{R} ^ { n } )$ is a (weak) solution of the differential equation $P ( D ) u = 0$ if and only if it satisfies the generalized mean-value condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} \int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + }, \end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014068.png" /> is an appropriate complex measure supported on the unit ball of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014070.png" />. (The choice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014071.png" /> corresponds to (a1).) The local version of this result requires that (a2) holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014072.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014073.png" />. Solutions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014074.png" /> are also characterized by two-radius theorems of Delsarte type [[#References|[a22]]], [[#References|[a23]]], cf. [[#References|[a19]]].
+
where $\mu$ is an appropriate complex measure supported on the unit ball of ${\bf R} ^ { n }$ and $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$. (The choice $d \mu = d \sigma _ { 1 } - \delta _ { 0 }$ corresponds to (a1).) The local version of this result requires that (a2) holds for all $x \in \mathcal{D} \subset \mathbf{R} ^ { n }$ and all $0 &lt; r &lt; \text { dist } ( x , \partial \cal D )$. Solutions of $P ( D ) u = 0$ are also characterized by two-radius theorems of Delsarte type [[#References|[a22]]], [[#References|[a23]]], cf. [[#References|[a19]]].
  
 
==Pluriharmonic and separately harmonic functions.==
 
==Pluriharmonic and separately harmonic functions.==
Mean-value characterizations of pluriharmonic functions (i.e., real parts of holomorphic functions, cf. also [[Pluriharmonic function|Pluriharmonic function]]) and separately harmonic functions (i.e., functions harmonic with respect to each variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014076.png" />) are studied in [[#References|[a3]]]. Let
+
Mean-value characterizations of pluriharmonic functions (i.e., real parts of holomorphic functions, cf. also [[Pluriharmonic function|Pluriharmonic function]]) and separately harmonic functions (i.e., functions harmonic with respect to each variable $z_j$, $1 \leq j \leq n$) are studied in [[#References|[a3]]]. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014077.png" /></td> </tr></table>
+
\begin{equation*} \nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \bigwedge d \zeta; \end{equation*}
  
here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014079.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014080.png" /> is a complete bounded [[Reinhardt domain|Reinhardt domain]] with centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014081.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014082.png" /> is separately harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014083.png" /> and continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014084.png" />, then
+
here $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta }_{ k + 1} \wedge \ldots \wedge d \overline { \zeta }_{n}$, $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$. If $\mathcal{D} \subset \mathbf{C} ^ { n }$ is a complete bounded [[Reinhardt domain|Reinhardt domain]] with centre at the point $a$ and $f$ is separately harmonic in $\mathcal{D}$ and continuous in $\overline{\mathcal{D}}$, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a3} \frac { \pi ^ { n } } { n \operatorname { vol } ( {\cal D} ) } \int _ { \partial \cal D } f ( \zeta ) \nu ( \zeta - a ) = f ( a ). \end{equation}
  
Take for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014086.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014087.png" />-circular ellipsoids with centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014088.png" />,
+
Take for $\mathcal{D}$ the $n$-circular ellipsoids with centre at the point $a$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014089.png" /></td> </tr></table>
+
\begin{equation*} \mathcal{D} _ { j , k } ( a ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - a _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { n } - a _ { n } | ^ { 2 } &lt; r _ { j , k } ^ { 2 } \}, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014091.png" />, and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014092.png" />. Then the following result holds. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014093.png" /> be such that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014094.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014095.png" /> conditions obtained by setting in (a3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014097.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014098.png" /> hold. If no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014099.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140100.png" /> and if
+
where $k = 1,2$, $j = 1 , \ldots , n$, and all $b _ { j } ^ { l } &gt; 0$. Then the following result holds. Let $f \in C ( \mathbf{C} ^ { n } )$ be such that for each $a \in \mathbf{C} ^ {n }$ the $2 n$ conditions obtained by setting in (a3) $\mathcal{D} = \mathcal{D} _ { j , k } ( a )$, $j = 1 , \ldots , n$, and $k = 1,2$ hold. If no $r_{j,1} / r_{j,2} $ belongs to $H _ { 2n }$ and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140101.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0, \end{equation*}
  
then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140102.png" /> is separately harmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140103.png" />.
+
then $f$ is separately harmonic in $\mathbf{C} ^ { n }$.
  
Similarly, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140104.png" /> is a complete bounded circular (Cartan) domain with centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140105.png" /> (cf. also [[Reinhardt domain|Reinhardt domain]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140106.png" /> is pluriharmonic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140107.png" /> and continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140108.png" />, then
+
Similarly, if $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { n }$ is a complete bounded circular (Cartan) domain with centre at the point $a$ (cf. also [[Reinhardt domain|Reinhardt domain]]) and $f$ is pluriharmonic in $\mathcal{D} _ { 1 }$ and continuous in $\overline { \mathcal{D} } _ { 1 }$, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140109.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a4} \frac { \pi ^ { n } } { n \operatorname { vol } ( \mathcal{D} _ { 1 } ) } \int _ { \partial \mathcal{D} _ { 1 } } f ( \zeta ) \nu ( \zeta - a ) = f ( a ). \end{equation}
  
Consider now circular ellipsoids with centre at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140110.png" />:
+
Consider now circular ellipsoids with centre at the point $a$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140111.png" /></td> </tr></table>
+
\begin{equation*} {\cal D} _ { j , k } ^ { p } ( a ) = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140112.png" /></td> </tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140112.png"/></td> </tr></table>
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140113.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140114.png" />) be the inverse matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140115.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140116.png" /> fixed. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140117.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140118.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140119.png" />) be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140120.png" />-matrix with entries
+
Let $\| d _ { lm } ^ { p } \|$ ($l , m = 1 , \dots , n$) be the inverse matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140115.png"/> for $p$ fixed. Let $Q = \| q _ { p s , i l} \|$ ($p , s = 1 , \dots , n$; $i , l = 1 , \dots , n$) be the $( n ^ { 2 } \times n ^ { 2 } )$-matrix with entries
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140121.png" /></td> </tr></table>
+
\begin{equation*} q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }. \end{equation*}
  
Then the following result holds. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140122.png" /> be such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140123.png" /> the conditions (a4) hold for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140124.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140125.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140126.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140127.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140128.png" /> conditions). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140129.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140130.png" /> are such that no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140131.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140132.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140134.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140135.png" /> is pluriharmonic.
+
Then the following result holds. Let $f \in C ( \mathbf{C} ^ { n } )$ be such that for every $a \in \mathbf{C} ^ {n }$ the conditions (a4) hold for $\mathcal{D} _ { 1 } = \mathcal{D} _ { j , k } ^ { p } ( a )$, $j = 1 , \ldots , n$, $k = 1,2$, $p = 1 , \dots , n$ ($2 n ^ { 2 }$ conditions). If $r _ { j , 1 }$ and $r_{ j , 2}$ are such that no $r_{j,1} / r_{j,2} $ belongs to $H _ { 2n }$, $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ and $\det Q \neq 0$, then $f$ is pluriharmonic.
  
 
Local versions of the above-mentioned results are given also in [[#References|[a3]]], as well as mean-value characterizations of pluriharmonic functions and separately harmonic functions by integration over the distinguished boundaries of poly-discs.
 
Local versions of the above-mentioned results are given also in [[#References|[a3]]], as well as mean-value characterizations of pluriharmonic functions and separately harmonic functions by integration over the distinguished boundaries of poly-discs.
  
 
==Holomorphic and pluriharmonic functions.==
 
==Holomorphic and pluriharmonic functions.==
In certain situations, Temlyakov–Opial–Siciak-type mean-value theorems (see [[#References|[a2]]], [[#References|[a16]]], [[#References|[a18]]]) can be used to characterize holomorphic and pluriharmonic functions. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140136.png" />-times continuously differentiable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140137.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140138.png" />, the integral representation under discussion can be written as
+
In certain situations, Temlyakov–Opial–Siciak-type mean-value theorems (see [[#References|[a2]]], [[#References|[a16]]], [[#References|[a18]]]) can be used to characterize holomorphic and pluriharmonic functions. For $( n - 1 )$-times continuously differentiable functions $f$ on $\mathbf{C} ^ { n }$, the integral representation under discussion can be written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140139.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
\begin{equation} \tag{a5} f ( z ) = ( L f ) ( z ) = ( L _ { F_n } f ) ( z ) = \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140140.png" /></td> </tr></table>
+
\begin{equation*} = ( 2 \pi i ) ^ { 1 - n } \int _ { \Delta _ { n } } d t \int _ { S } ( F _ { n }\, f ) \times \times \left( ( 1 - t _ { 2 } - \ldots - t _ { n } ) ( z , \zeta ) , \frac { t _ { 2 } } { \zeta _ { 2 } } ( z , \zeta ) , \ldots , \frac { t _ { n } } { \zeta _ { n } } ( z , \zeta ) \right) \frac { d \zeta } { \zeta }, \end{equation*}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140141.png" /> is the unit simplex in the real Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140142.png" />-dimensional space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140143.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140144.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140145.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140146.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140147.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140148.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140149.png" /> denote a certain differential operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140150.png" />, which will be specified separately for holomorphic functions, for pluriharmonic functions, and also for anti-holomorphic functions (that is, functions holomorphic with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140151.png" />). More precisely,
+
where $\Delta _ { n } = \{ ( t _ { 2 } , \dots , t _ { n } ) : t _ { 2 } , \dots , t _ { n } \geq 0 , t _ { 2 } + \dots + t _ { n } \leq 1 \}$ is the unit simplex in the real Euclidean $( n - 1 )$-dimensional space, $S = \{ \zeta : | \zeta _ { j } | = 1 ,\; j = 2 , \dots , n \}$, $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$, $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { n } )$, $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$, $d \zeta / \zeta = d \zeta _ { 2 } / \zeta _ { 2 } \wedge \ldots \wedge d \zeta _ { n } / \zeta _ { n }$, and $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$. Let $F _ { n }$ denote a certain differential operator of order $n - 1$, which will be specified separately for holomorphic functions, for pluriharmonic functions, and also for anti-holomorphic functions (that is, functions holomorphic with respect to $\overline{z} = ( \overline{z}_{1} , \dots , \overline{z}_ { n } )$). More precisely,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140152.png" /></td> </tr></table>
+
\begin{equation*} F _ { n } f = \left[ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) \right] f, \end{equation*}
  
 
with the first-order differential operator to be specified, as mentioned above.
 
with the first-order differential operator to be specified, as mentioned above.
  
In [[#References|[a4]]], the following criteria are proved for functions that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140153.png" />-times continuously differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140154.png" />.
+
In [[#References|[a4]]], the following criteria are proved for functions that are $( n - 1 )$-times continuously differentiable on $\mathbf{C} ^ { n }$.
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140155.png" /> is holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140156.png" /> if and only if (a5) holds with
+
A function $f$ is holomorphic in $\mathbf{C} ^ { n }$ if and only if (a5) holds with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140157.png" /></td> </tr></table>
+
\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z_j \frac { \partial f ( z ) } { \partial z _ { j } }. \end{equation*}
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140158.png" /> is anti-holomorphic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140159.png" /> if and only if (a5) holds with
+
A function $f$ is anti-holomorphic on $\mathbf{C} ^ { n }$ if and only if (a5) holds with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140160.png" /></td> </tr></table>
+
\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }. \end{equation*}
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140161.png" /> is pluriharmonic on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140162.png" /> if and only if (a5) holds with
+
A function $f$ is pluriharmonic on $\mathbf{C} ^ { n }$ if and only if (a5) holds with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140163.png" /></td> </tr></table>
+
\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \left( z _ { j } \frac { \partial f ( z ) } { \partial z _ { j } } + \bar{z} _ { j } \frac { \partial f ( z ) } { \partial \bar{z} _ { j } } \right). \end{equation*}
  
 
These results remain true without the assumption of smoothness; in this case, derivatives being understood in the distributional sense [[#References|[a5]]].
 
These results remain true without the assumption of smoothness; in this case, derivatives being understood in the distributional sense [[#References|[a5]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Ahern,  M. Flores,  W. Rudin,  "An invariant volume-mean-value property"  ''J. Funct. Anal.'' , '''11'''  (1993)  pp. 380–397</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.A. Aizenberg,  "Pluriharmonic functions"  ''Dokl. Akad. Nauk. SSSR'' , '''124'''  (1959)  pp. 967–969  (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.A. Aizenberg,  C.A. Berenstein,  L. Wertheim,  "Mean-value characterization of pluriharmonic and separately harmonic functions"  ''Pacific J. Math.'' , '''175'''  (1996)  pp. 295–306</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L. Aizenberg,  E. Liflyand,  "Mean-value characterization of holomorphic and pluriharmonic functions"  ''Complex Variables'' , '''32'''  (1997)  pp. 131–146</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  L. Aizenberg,  E. Liflyand,  "Mean-value characterization of holomorphic and pluriharmonic functions, II"  ''Complex Variables'' , '''39'''  (1999)  pp. 381–390</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  Y. Ben Natan,  Y. Weit,  "Integrable harmonic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140164.png" />"  ''J. Funct. Anal.'' , '''150'''  (1997)  pp. 471–477</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  Y. Ben Natan,  Y. Weit,  "Integrable harmonic functions and symmetric spaces of rank one"  ''J. Funct. Anal.'' , '''160'''  (1998)  pp. 141–149</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  Y. Benyamini,  Y. Weit,  "Functions satisfying the mean value property in the limit"  ''J. Anal. Math.'' , '''52'''  (1989)  pp. 167–198</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.A. Berenstein,  R. Gay,  "A local version of the two-circles theorem"  ''Israel J. Math.'' , '''55'''  (1986)  pp. 267–288</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  C.A. Berenstein,  L. Zalcman,  "Pompeiu's problem on symmetric spaces"  ''Comment. Math. Helv.'' , '''55'''  (1980)  pp. 593–621</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  J. Delsarte,  "Lectures on topics in mean periodic functions and the two-radius theorem" , Tata Institute, Bombay  (1961)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  W. Hansen,  "Restricted mean value property and harmonic functions"  J. Kral (ed.)  et al. (ed.) , ''Potential Theory–ICPT 94 (Proc. Intern. Conf., Konty)'' , de Gruyter  (1996)  pp. 67–90</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  W. Hansen,  N. Nadirashvili,  "A converse to the mean value theorem for harmonic functions"  ''Acta Math.'' , '''171'''  (1993)  pp. 139–163</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  W. Hansen,  N. Nadirashvili,  "Littlewood's one circle problem"  ''J. London Math. Soc.'' , '''50'''  (1994)  pp. 349–360</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  I. Netuka,  J. Vesely,  "Mean value property and harmonic functions"  K. GowriSankaran (ed.)  et al. (ed.) , ''Classical and Modern Potential Theory and Applications'' , Kluwer Acad. Publ.  (1994)  pp. 359–398</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top">  Z. Opial,  J. Siciak,  "Integral formulas for function holomorphic in convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140165.png" /> circular domains"  ''Zeszyty Nauk. Uniw. Jagiello. Prace Mat.'' , '''9'''  (1963)  pp. 67–75</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top">  W. Rudin,  "Function theory in the unit ball of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140166.png" />" , Springer  (1980)</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top">  A.A. Temlyakov,  "Integral representation of functions of two complex variables"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''21'''  (1957)  pp. 89–92  (In Russian)</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top">  V.V. Volchkov,  "New theorems on the mean for solutions of the Helmholtz equation"  ''Russian Acad. Sci. Sb. Math.'' , '''79'''  (1994)  pp. 281–286</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top">  V.V. Volchkov,  "New two-radii theorems in the theory of harmonic functions"  ''Russian Acad. Sci. Izv. Math.'' , '''44'''  (1995)  pp. 181–192</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top">  V.V. Volchkov,  "The final version of the mean value theorem for harmonic functions"  ''Math. Notes'' , '''59'''  (1996)  pp. 247–252</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top">  L. Zalcman,  "Offbeat integral geometry"  ''Amer. Math. Monthly'' , '''87'''  (1980)  pp. 161–175</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top">  L. Zalcman,  "Mean values and differential equations"  ''Israel J. Math.'' , '''14'''  (1973)  pp. 339–352</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  P. Ahern,  M. Flores,  W. Rudin,  "An invariant volume-mean-value property"  ''J. Funct. Anal.'' , '''11'''  (1993)  pp. 380–397</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  L.A. Aizenberg,  "Pluriharmonic functions"  ''Dokl. Akad. Nauk. SSSR'' , '''124'''  (1959)  pp. 967–969  (In Russian)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  L.A. Aizenberg,  C.A. Berenstein,  L. Wertheim,  "Mean-value characterization of pluriharmonic and separately harmonic functions"  ''Pacific J. Math.'' , '''175'''  (1996)  pp. 295–306</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  L. Aizenberg,  E. Liflyand,  "Mean-value characterization of holomorphic and pluriharmonic functions"  ''Complex Variables'' , '''32'''  (1997)  pp. 131–146</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  L. Aizenberg,  E. Liflyand,  "Mean-value characterization of holomorphic and pluriharmonic functions, II"  ''Complex Variables'' , '''39'''  (1999)  pp. 381–390</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  Y. Ben Natan,  Y. Weit,  "Integrable harmonic functions on ${\bf R} ^ { n }$"  ''J. Funct. Anal.'' , '''150'''  (1997)  pp. 471–477</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  Y. Ben Natan,  Y. Weit,  "Integrable harmonic functions and symmetric spaces of rank one"  ''J. Funct. Anal.'' , '''160'''  (1998)  pp. 141–149</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  Y. Benyamini,  Y. Weit,  "Functions satisfying the mean value property in the limit"  ''J. Anal. Math.'' , '''52'''  (1989)  pp. 167–198</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  C.A. Berenstein,  R. Gay,  "A local version of the two-circles theorem"  ''Israel J. Math.'' , '''55'''  (1986)  pp. 267–288</td></tr><tr><td valign="top">[a10]</td> <td valign="top">  C.A. Berenstein,  L. Zalcman,  "Pompeiu's problem on symmetric spaces"  ''Comment. Math. Helv.'' , '''55'''  (1980)  pp. 593–621</td></tr><tr><td valign="top">[a11]</td> <td valign="top">  J. Delsarte,  "Lectures on topics in mean periodic functions and the two-radius theorem" , Tata Institute, Bombay  (1961)</td></tr><tr><td valign="top">[a12]</td> <td valign="top">  W. Hansen,  "Restricted mean value property and harmonic functions"  J. Kral (ed.)  et al. (ed.) , ''Potential Theory–ICPT 94 (Proc. Intern. Conf., Konty)'' , de Gruyter  (1996)  pp. 67–90</td></tr><tr><td valign="top">[a13]</td> <td valign="top">  W. Hansen,  N. Nadirashvili,  "A converse to the mean value theorem for harmonic functions"  ''Acta Math.'' , '''171'''  (1993)  pp. 139–163</td></tr><tr><td valign="top">[a14]</td> <td valign="top">  W. Hansen,  N. Nadirashvili,  "Littlewood's one circle problem"  ''J. London Math. Soc.'' , '''50'''  (1994)  pp. 349–360</td></tr><tr><td valign="top">[a15]</td> <td valign="top">  I. Netuka,  J. Vesely,  "Mean value property and harmonic functions"  K. GowriSankaran (ed.)  et al. (ed.) , ''Classical and Modern Potential Theory and Applications'' , Kluwer Acad. Publ.  (1994)  pp. 359–398</td></tr><tr><td valign="top">[a16]</td> <td valign="top">  Z. Opial,  J. Siciak,  "Integral formulas for function holomorphic in convex $n$ circular domains" ''Zeszyty Nauk. Uniw. Jagiello. Prace Mat.'' , '''9'''  (1963)  pp. 67–75</td></tr><tr><td valign="top">[a17]</td> <td valign="top">  W. Rudin,  "Function theory in the unit ball of $\mathbf{C} ^ { n }$" , Springer  (1980)</td></tr><tr><td valign="top">[a18]</td> <td valign="top">  A.A. Temlyakov,  "Integral representation of functions of two complex variables"  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''21'''  (1957)  pp. 89–92  (In Russian)</td></tr><tr><td valign="top">[a19]</td> <td valign="top">  V.V. Volchkov,  "New theorems on the mean for solutions of the Helmholtz equation"  ''Russian Acad. Sci. Sb. Math.'' , '''79'''  (1994)  pp. 281–286</td></tr><tr><td valign="top">[a20]</td> <td valign="top">  V.V. Volchkov,  "New two-radii theorems in the theory of harmonic functions"  ''Russian Acad. Sci. Izv. Math.'' , '''44'''  (1995)  pp. 181–192</td></tr><tr><td valign="top">[a21]</td> <td valign="top">  V.V. Volchkov,  "The final version of the mean value theorem for harmonic functions"  ''Math. Notes'' , '''59'''  (1996)  pp. 247–252</td></tr><tr><td valign="top">[a22]</td> <td valign="top">  L. Zalcman,  "Offbeat integral geometry"  ''Amer. Math. Monthly'' , '''87'''  (1980)  pp. 161–175</td></tr><tr><td valign="top">[a23]</td> <td valign="top">  L. Zalcman,  "Mean values and differential equations"  ''Israel J. Math.'' , '''14'''  (1973)  pp. 339–352</td></tr></table>

Revision as of 16:57, 1 July 2020

Harmonic functions.

Let $S ( x , r )$ denote the sphere of radius $r$ and centre $x$ in ${\bf R} ^ { n }$ and let $d \sigma _ { r }$ be the normalized Lebesgue measure on $S ( x , r )$. One version of the classical converse of Gauss' mean-value theorem for harmonic functions asserts that a function $f \in C ( R ^ { n } )$ which satisfies

\begin{equation} \tag{a1} \int _ { S ( x , r ) } f ( y ) d \sigma _ { r } ( y ) = f ( x ) , x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + }, \end{equation}

is harmonic in ${\bf R} ^ { n }$ (cf. also Harmonic function). In fact, one need only require that (a1) holds for $0 < r < \rho ( x )$, where $\rho$ is an arbitrary positive function of $x$. A corresponding "local" result holds for continuous functions defined on an arbitrary domain in ${\bf R} ^ { n }$.

Remarkably, for the harmonicity of $f$ it suffices that (a1) holds only for two distinct values of $r$ (and all $x$), so long as the radii are not related in a special way. Specifically, let

\begin{equation*} j _ { n } ( \zeta ) = \Gamma \left( \frac { n } { 2 } \right) \left( \frac { 2 } { \zeta } \right) ^ { ( n - 2 ) / 2 } J _ { ( n - 2 ) / 2 } ( \zeta ), \end{equation*}

where $J _ { k }$ is the Bessel function of the first kind of order $k$ (cf. also Bessel functions), and let $H _ { n }$ be the set of positive quotients of zeros of $j _ { n } ( \zeta ) - 1$. J. Delsarte proved that if (a1) holds for $r = r _{1}$ and $r = r_2$ and $r _ { 1 } / r _ { 2 } \notin H _ { n}$, then $f$ is harmonic in ${\bf R} ^ { n }$ [a11], cf. [a20]. (In fact, $H _ { 3 } = \{ 1 \}$, so any two distinct radii are sufficient in dimension $3$.) In [a10], Delsarte's theorem is extended to non-compact irreducible symmetric spaces of rank $1$. There is also a local version of this result [a9], [a21]. Let $B _ { R }$ be the ball of radius $R$ centred at $0$ in ${\bf R} ^ { n }$. Now, if $f \in C ( B _ { R } )$ satisfies (a1) for $r = r _ { 1 } , r _ { 2 }$ ($r _ { 1 } / r _ { 2 } \notin H _ { n}$) and $x$ such that $| x | + r_j < R$, then $f$ is harmonic on $B _ { R }$ so long as $r _ { 1 } + r _ { 2 } < R$.

In this connection, one should also mention Littlewood's one-circle problem, solved by W. Hansen and N. Nadirashvili [a14]. Let $f$ be a bounded continuous function on the open unit disc $U$ in $\mathbf{R} ^ { 2 }$. Suppose that for each point in $U$ there exists an $r = r ( x )$ such that the mean-value condition of (a1) holds. Must $f$ be harmonic? The answer turns out to be "no" [a14]. On the other hand, the one-radius condition obtained by replacing the peripheral mean in (a1) by the (areal) average over the disc of radius $r ( x )$ does imply harmonicity [a13]. This last result extends to functions defined on arbitrary bounded domains in ${\bf R} ^ { n }$ (and many unbounded domains as well); one can also weaken the boundedness assumption on $f$ to $| f | < h$ for some positive harmonic function $h$. For a survey of these and related results, see [a12].

Interesting new phenomena arise when one allows the integration to extend over the full space on which $f$ is defined. Consider, for instance, functions integrable with respect to the (normalized) Lebesgue measure $m$ on the unit ball $B$ in $\mathbf{C} ^ { n }$. If $f$ is harmonic with respect to the invariant Laplacian [a17], 4.1, then

\begin{equation*} \int _ { B } ( f \circ \psi ) d m = f ( \psi ( 0 ) ) \end{equation*}

for every $\psi$ in $\operatorname{Aut}( B )$. The converse holds if and only if $n < 12$ [a1], cf. [a7] and, for a Euclidean analogue, [a6]. Asymptotic mean-value conditions for (non-integrable) functions on ${\bf R} ^ { n }$ are studied in [a8]. Finally, for a detailed overview of the whole subject, see [a15].

Generalization.

The extent to which mean-value theorems and their converses generalize to differential equations other than $\Delta u = 0$ is explored in [a22]. There it is shown that if $P ( \xi _ { 1 } , \dots , \xi _ { n } )$ is a homogeneous polynomial, then $u \in C ( \mathbf{R} ^ { n } )$ is a (weak) solution of the differential equation $P ( D ) u = 0$ if and only if it satisfies the generalized mean-value condition

\begin{equation} \tag{a2} \int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + }, \end{equation}

where $\mu$ is an appropriate complex measure supported on the unit ball of ${\bf R} ^ { n }$ and $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$. (The choice $d \mu = d \sigma _ { 1 } - \delta _ { 0 }$ corresponds to (a1).) The local version of this result requires that (a2) holds for all $x \in \mathcal{D} \subset \mathbf{R} ^ { n }$ and all $0 < r < \text { dist } ( x , \partial \cal D )$. Solutions of $P ( D ) u = 0$ are also characterized by two-radius theorems of Delsarte type [a22], [a23], cf. [a19].

Pluriharmonic and separately harmonic functions.

Mean-value characterizations of pluriharmonic functions (i.e., real parts of holomorphic functions, cf. also Pluriharmonic function) and separately harmonic functions (i.e., functions harmonic with respect to each variable $z_j$, $1 \leq j \leq n$) are studied in [a3]. Let

\begin{equation*} \nu ( \zeta - a ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } ( \overline { \zeta } _ { k } - \overline { a } _ { k } ) d \overline { \zeta } [ k ] \bigwedge d \zeta; \end{equation*}

here $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta }_{ k + 1} \wedge \ldots \wedge d \overline { \zeta }_{n}$, $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$. If $\mathcal{D} \subset \mathbf{C} ^ { n }$ is a complete bounded Reinhardt domain with centre at the point $a$ and $f$ is separately harmonic in $\mathcal{D}$ and continuous in $\overline{\mathcal{D}}$, then

\begin{equation} \tag{a3} \frac { \pi ^ { n } } { n \operatorname { vol } ( {\cal D} ) } \int _ { \partial \cal D } f ( \zeta ) \nu ( \zeta - a ) = f ( a ). \end{equation}

Take for $\mathcal{D}$ the $n$-circular ellipsoids with centre at the point $a$,

\begin{equation*} \mathcal{D} _ { j , k } ( a ) = \{ z : b _ { j } ^ { 1 } | z _ { 1 } - a _ { 1 } | ^ { 2 } + \ldots + b _ { j } ^ { n } | z _ { n } - a _ { n } | ^ { 2 } < r _ { j , k } ^ { 2 } \}, \end{equation*}

where $k = 1,2$, $j = 1 , \ldots , n$, and all $b _ { j } ^ { l } > 0$. Then the following result holds. Let $f \in C ( \mathbf{C} ^ { n } )$ be such that for each $a \in \mathbf{C} ^ {n }$ the $2 n$ conditions obtained by setting in (a3) $\mathcal{D} = \mathcal{D} _ { j , k } ( a )$, $j = 1 , \ldots , n$, and $k = 1,2$ hold. If no $r_{j,1} / r_{j,2} $ belongs to $H _ { 2n }$ and if

\begin{equation*} \operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0, \end{equation*}

then $f$ is separately harmonic in $\mathbf{C} ^ { n }$.

Similarly, if $\mathcal{D} _ { 1 } \subset \mathbf{C} ^ { n }$ is a complete bounded circular (Cartan) domain with centre at the point $a$ (cf. also Reinhardt domain) and $f$ is pluriharmonic in $\mathcal{D} _ { 1 }$ and continuous in $\overline { \mathcal{D} } _ { 1 }$, then

\begin{equation} \tag{a4} \frac { \pi ^ { n } } { n \operatorname { vol } ( \mathcal{D} _ { 1 } ) } \int _ { \partial \mathcal{D} _ { 1 } } f ( \zeta ) \nu ( \zeta - a ) = f ( a ). \end{equation}

Consider now circular ellipsoids with centre at the point $a$:

\begin{equation*} {\cal D} _ { j , k } ^ { p } ( a ) = \end{equation*}

Let $\| d _ { lm } ^ { p } \|$ ($l , m = 1 , \dots , n$) be the inverse matrix of for $p$ fixed. Let $Q = \| q _ { p s , i l} \|$ ($p , s = 1 , \dots , n$; $i , l = 1 , \dots , n$) be the $( n ^ { 2 } \times n ^ { 2 } )$-matrix with entries

\begin{equation*} q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }. \end{equation*}

Then the following result holds. Let $f \in C ( \mathbf{C} ^ { n } )$ be such that for every $a \in \mathbf{C} ^ {n }$ the conditions (a4) hold for $\mathcal{D} _ { 1 } = \mathcal{D} _ { j , k } ^ { p } ( a )$, $j = 1 , \ldots , n$, $k = 1,2$, $p = 1 , \dots , n$ ($2 n ^ { 2 }$ conditions). If $r _ { j , 1 }$ and $r_{ j , 2}$ are such that no $r_{j,1} / r_{j,2} $ belongs to $H _ { 2n }$, $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ and $\det Q \neq 0$, then $f$ is pluriharmonic.

Local versions of the above-mentioned results are given also in [a3], as well as mean-value characterizations of pluriharmonic functions and separately harmonic functions by integration over the distinguished boundaries of poly-discs.

Holomorphic and pluriharmonic functions.

In certain situations, Temlyakov–Opial–Siciak-type mean-value theorems (see [a2], [a16], [a18]) can be used to characterize holomorphic and pluriharmonic functions. For $( n - 1 )$-times continuously differentiable functions $f$ on $\mathbf{C} ^ { n }$, the integral representation under discussion can be written as

\begin{equation} \tag{a5} f ( z ) = ( L f ) ( z ) = ( L _ { F_n } f ) ( z ) = \end{equation}

\begin{equation*} = ( 2 \pi i ) ^ { 1 - n } \int _ { \Delta _ { n } } d t \int _ { S } ( F _ { n }\, f ) \times \times \left( ( 1 - t _ { 2 } - \ldots - t _ { n } ) ( z , \zeta ) , \frac { t _ { 2 } } { \zeta _ { 2 } } ( z , \zeta ) , \ldots , \frac { t _ { n } } { \zeta _ { n } } ( z , \zeta ) \right) \frac { d \zeta } { \zeta }, \end{equation*}

where $\Delta _ { n } = \{ ( t _ { 2 } , \dots , t _ { n } ) : t _ { 2 } , \dots , t _ { n } \geq 0 , t _ { 2 } + \dots + t _ { n } \leq 1 \}$ is the unit simplex in the real Euclidean $( n - 1 )$-dimensional space, $S = \{ \zeta : | \zeta _ { j } | = 1 ,\; j = 2 , \dots , n \}$, $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$, $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { n } )$, $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$, $d \zeta / \zeta = d \zeta _ { 2 } / \zeta _ { 2 } \wedge \ldots \wedge d \zeta _ { n } / \zeta _ { n }$, and $( z , \zeta ) = z _ { 1 } + z _ { 2 } \zeta _ { 2 } + \ldots + z _ { n } \zeta _ { n }$. Let $F _ { n }$ denote a certain differential operator of order $n - 1$, which will be specified separately for holomorphic functions, for pluriharmonic functions, and also for anti-holomorphic functions (that is, functions holomorphic with respect to $\overline{z} = ( \overline{z}_{1} , \dots , \overline{z}_ { n } )$). More precisely,

\begin{equation*} F _ { n } f = \left[ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) \right] f, \end{equation*}

with the first-order differential operator to be specified, as mentioned above.

In [a4], the following criteria are proved for functions that are $( n - 1 )$-times continuously differentiable on $\mathbf{C} ^ { n }$.

A function $f$ is holomorphic in $\mathbf{C} ^ { n }$ if and only if (a5) holds with

\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } z_j \frac { \partial f ( z ) } { \partial z _ { j } }. \end{equation*}

A function $f$ is anti-holomorphic on $\mathbf{C} ^ { n }$ if and only if (a5) holds with

\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }. \end{equation*}

A function $f$ is pluriharmonic on $\mathbf{C} ^ { n }$ if and only if (a5) holds with

\begin{equation*} ( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \left( z _ { j } \frac { \partial f ( z ) } { \partial z _ { j } } + \bar{z} _ { j } \frac { \partial f ( z ) } { \partial \bar{z} _ { j } } \right). \end{equation*}

These results remain true without the assumption of smoothness; in this case, derivatives being understood in the distributional sense [a5].

References

[a1] P. Ahern, M. Flores, W. Rudin, "An invariant volume-mean-value property" J. Funct. Anal. , 11 (1993) pp. 380–397
[a2] L.A. Aizenberg, "Pluriharmonic functions" Dokl. Akad. Nauk. SSSR , 124 (1959) pp. 967–969 (In Russian)
[a3] L.A. Aizenberg, C.A. Berenstein, L. Wertheim, "Mean-value characterization of pluriharmonic and separately harmonic functions" Pacific J. Math. , 175 (1996) pp. 295–306
[a4] L. Aizenberg, E. Liflyand, "Mean-value characterization of holomorphic and pluriharmonic functions" Complex Variables , 32 (1997) pp. 131–146
[a5] L. Aizenberg, E. Liflyand, "Mean-value characterization of holomorphic and pluriharmonic functions, II" Complex Variables , 39 (1999) pp. 381–390
[a6] Y. Ben Natan, Y. Weit, "Integrable harmonic functions on ${\bf R} ^ { n }$" J. Funct. Anal. , 150 (1997) pp. 471–477
[a7] Y. Ben Natan, Y. Weit, "Integrable harmonic functions and symmetric spaces of rank one" J. Funct. Anal. , 160 (1998) pp. 141–149
[a8] Y. Benyamini, Y. Weit, "Functions satisfying the mean value property in the limit" J. Anal. Math. , 52 (1989) pp. 167–198
[a9] C.A. Berenstein, R. Gay, "A local version of the two-circles theorem" Israel J. Math. , 55 (1986) pp. 267–288
[a10] C.A. Berenstein, L. Zalcman, "Pompeiu's problem on symmetric spaces" Comment. Math. Helv. , 55 (1980) pp. 593–621
[a11] J. Delsarte, "Lectures on topics in mean periodic functions and the two-radius theorem" , Tata Institute, Bombay (1961)
[a12] W. Hansen, "Restricted mean value property and harmonic functions" J. Kral (ed.) et al. (ed.) , Potential Theory–ICPT 94 (Proc. Intern. Conf., Konty) , de Gruyter (1996) pp. 67–90
[a13] W. Hansen, N. Nadirashvili, "A converse to the mean value theorem for harmonic functions" Acta Math. , 171 (1993) pp. 139–163
[a14] W. Hansen, N. Nadirashvili, "Littlewood's one circle problem" J. London Math. Soc. , 50 (1994) pp. 349–360
[a15] I. Netuka, J. Vesely, "Mean value property and harmonic functions" K. GowriSankaran (ed.) et al. (ed.) , Classical and Modern Potential Theory and Applications , Kluwer Acad. Publ. (1994) pp. 359–398
[a16] Z. Opial, J. Siciak, "Integral formulas for function holomorphic in convex $n$ circular domains" Zeszyty Nauk. Uniw. Jagiello. Prace Mat. , 9 (1963) pp. 67–75
[a17] W. Rudin, "Function theory in the unit ball of $\mathbf{C} ^ { n }$" , Springer (1980)
[a18] A.A. Temlyakov, "Integral representation of functions of two complex variables" Izv. Akad. Nauk. SSSR Ser. Mat. , 21 (1957) pp. 89–92 (In Russian)
[a19] V.V. Volchkov, "New theorems on the mean for solutions of the Helmholtz equation" Russian Acad. Sci. Sb. Math. , 79 (1994) pp. 281–286
[a20] V.V. Volchkov, "New two-radii theorems in the theory of harmonic functions" Russian Acad. Sci. Izv. Math. , 44 (1995) pp. 181–192
[a21] V.V. Volchkov, "The final version of the mean value theorem for harmonic functions" Math. Notes , 59 (1996) pp. 247–252
[a22] L. Zalcman, "Offbeat integral geometry" Amer. Math. Monthly , 87 (1980) pp. 161–175
[a23] L. Zalcman, "Mean values and differential equations" Israel J. Math. , 14 (1973) pp. 339–352
How to Cite This Entry:
Mean-value characterization. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mean-value_characterization&oldid=14590
This article was adapted from an original article by L. AizenbergL. Zalcman (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article