|
|
Line 1: |
Line 1: |
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| + | |
| + | Out of 94 formulas, 94 were replaced by TEX code.--> |
| + | |
| + | {{TEX|semi-auto}}{{TEX|done}} |
| A [[Lie algebra|Lie algebra]] of special derivations of the divided power algebra | | A [[Lie algebra|Lie algebra]] of special derivations of the divided power algebra |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200101.png" /></td> </tr></table>
| + | \begin{equation*} O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\} \end{equation*} |
| | | |
− | over a [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200102.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200103.png" />. It is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200104.png" />, is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200105.png" />-dimensional and has a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200106.png" /> with commutator | + | over a [[Field|field]] $K$ of characteristic $p > 0$. It is usually denoted by $W _ { 1 } ( m )$, is $p ^ { m }$-dimensional and has a basis $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ with commutator |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200107.png" /></td> </tr></table>
| + | \begin{equation*} [ e _ { i } , e _ { j } ] = \left( \left( \begin{array} { c } { i + j + 1 } \\ { j } \end{array} \right) - \left( \begin{array} { c } { i + j + 1 } \\ { i } \end{array} \right) \right) e _ { i + j }. \end{equation*} |
| | | |
− | It also has another basis, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200108.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z1200109.png" />), with commutator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001011.png" /> is a [[Finite field|finite field]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001012.png" />. Zassenhaus algebras appeared first in this form in 1939 [[#References|[a8]]] (see also [[Witt algebra|Witt algebra]]). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001013.png" /> is simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001014.png" /> (cf. also [[Simple algebra|Simple algebra]]), has an ideal of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001015.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001017.png" />, and is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001018.png" />-dimensional non-Abelian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001020.png" />. It is a [[Lie p-algebra|Lie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001021.png" />-algebra]] if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001022.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001023.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001024.png" /> can be given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001027.png" />. By changing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001028.png" /> to other additive subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001029.png" />, or by changing the multiplication, one can get different algebras. For example, the multiplication | + | It also has another basis, $\{ f _ { \alpha } : \alpha \in \operatorname {GF} ( m ) \}$ (if $\operatorname{GF} ( m ) \subseteq K$), with commutator $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$, where $\operatorname {GF} ( m )$ is a [[Finite field|finite field]] of order $p ^ { m }$. Zassenhaus algebras appeared first in this form in 1939 [[#References|[a8]]] (see also [[Witt algebra|Witt algebra]]). $W _ { 1 } ( m )$ is simple if $p > 2$ (cf. also [[Simple algebra|Simple algebra]]), has an ideal of codimension $1$ if $p = 2$, $m > 1$, and is $2$-dimensional non-Abelian if $p = 2$, $m = 1$. It is a [[Lie p-algebra|Lie $p$-algebra]] if and only if $m = 1$. The $p$-structure on $W _ { 1 } ( 1 )$ can be given by $ e _{0} ^ { [ p ] } - e _ { 0 } = 0$, $e _ { i } ^ { p } = 0$, $i \neq 0$. By changing $\operatorname {GF} ( m )$ to other additive subgroup of $K$, or by changing the multiplication, one can get different algebras. For example, the multiplication |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001030.png" /></td> </tr></table>
| + | \begin{equation*} ( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }, \end{equation*} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001031.png" /> is an additive homomorphism of finite fields, gives rise to the Albert–Zassenhaus algebra. | + | where $h$ is an additive homomorphism of finite fields, gives rise to the Albert–Zassenhaus algebra. |
| | | |
− | Suppose that all algebras and modules are finite-dimensional and that the ground field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001032.png" /> is an [[Algebraically closed field|algebraically closed field]] of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001033.png" />. | + | Suppose that all algebras and modules are finite-dimensional and that the ground field $K$ is an [[Algebraically closed field|algebraically closed field]] of characteristic $p > 3$. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001034.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001035.png" />-module defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001036.png" /> on the [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001037.png" /> by | + | Let $U _ { t }$ be the $W _ { 1 } ( m )$-module defined for $t \in K$ on the [[Vector space|vector space]] $U = O _ { 1 } ( m )$ by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001038.png" /></td> </tr></table>
| + | \begin{equation*} ( e _ { i } ) _ { t } x ^ { ( j ) } = \left( \left( \begin{array} { c } { i + j } \\ { i + 1 } \end{array} \right) + t \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right)\right) x ^ { ( i + j ) }. \end{equation*} |
| | | |
− | For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001040.png" /> are isomorphic to the adjoint and co-adjoint modules, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001041.png" /> has an irreducible submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001042.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001043.png" /> is irreducible if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001044.png" />. Any irreducible restricted <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001045.png" />-module is isomorphic to one of the following modules: the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001046.png" />-dimensional trivial module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001047.png" />; the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001048.png" />-dimensional module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001049.png" />; or the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001050.png" />-dimensional module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001053.png" />. The maximal dimension of irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001054.png" />-modules is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001055.png" />, but there may be infinitely many non-isomorphic irreducible modules of given dimension. The minimal dimension of irreducible non-trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001056.png" />-modules is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001057.png" />, and any irreducible module of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001058.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001059.png" />. Any irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001060.png" />-module with a non-trivial action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001061.png" /> is irreducible as a module over the maximal subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001062.png" />. In any case, any non-restricted irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001063.png" />-module is induced by some irreducible submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001064.png" /> [[#References|[a3]]]. | + | For example, $ U _{ - 1}$ and $U _ { 2 }$ are isomorphic to the adjoint and co-adjoint modules, $U _ { 1 }$ has an irreducible submodule $\overline { U } _ { 1 } = \left\{ x ^ { ( i ) } : 0 \leq i < p ^ { m } - 1 \right\}$, and $U _ { t }$ is irreducible if $t \neq 0,1$. Any irreducible restricted $W _ { 1 } ( 1 )$-module is isomorphic to one of the following modules: the $1$-dimensional trivial module $K$; the $( p - 1 )$-dimensional module $\overline { U } _ { 1 }$; or the $p$-dimensional module $U _ { t }$, $t \in \mathbf{Z} / p \mathbf{Z}$, $t \neq 0,1$. The maximal dimension of irreducible $W _ { 1 } ( m )$-modules is $p ^ { ( p ^ { m } - 1 ) / 2 }$, but there may be infinitely many non-isomorphic irreducible modules of given dimension. The minimal dimension of irreducible non-trivial $W _ { 1 } ( m )$-modules is $p ^ { m } - 1$, and any irreducible module of dimension $p ^ { m } - 1$ is isomorphic to $\overline { U } _ { 1 }$. Any irreducible $W _ { 1 } ( 1 )$-module with a non-trivial action of $e _ { p - 2}$ is irreducible as a module over the maximal subalgebra ${\cal L} _ { 0 } = \langle e _ { i } : i \geq 0 \rangle$. In any case, any non-restricted irreducible $W _ { 1 } ( 1 )$-module is induced by some irreducible submodule of ${\cal L}_0$ [[#References|[a3]]]. |
| | | |
− | Any simple Lie algebra of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001065.png" /> with a subalgebra of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001066.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001067.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001068.png" /> [[#References|[a4]]]. Albert–Zassenhaus algebras have subalgebras of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001069.png" />. Any automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001070.png" /> is induced by an admissible automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001071.png" /> i.e., by an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001072.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001073.png" /> is a linear combination of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001076.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001077.png" />. There are infinitely many non-conjugate Cartan subalgebras (cf. also [[Cartan subalgebra|Cartan subalgebra]]) of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001078.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001079.png" />, and exactly two non-conjugate Cartan subalgebras of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001080.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001081.png" /> [[#References|[a2]]]. The algebra of outer derivations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001082.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001083.png" />-dimensional and generated by the derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001085.png" /> has a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001086.png" />-parametric deformation [[#References|[a6]]]. A non-split central extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001087.png" /> was constructed first by R. Block in 1968 [[#References|[a1]]]. The characteristic-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001088.png" /> infinite-dimensional analogue of this extension is well known as the [[Virasoro algebra|Virasoro algebra]]. The list of irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001089.png" />-modules that have non-split extensions is the following: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001090.png" />. All bilinear invariant forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001091.png" /> are trivial, but it has a generalized [[Casimir element|Casimir element]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001092.png" />. The centre of the [[Universal enveloping algebra|universal enveloping algebra]] is generated by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001093.png" />-centre and the generalized Casimir elements [[#References|[a7]]]. | + | Any simple Lie algebra of dimension $> 3$ with a subalgebra of codimension $1$ is isomorphic to $W _ { 1 } ( m )$ for some $m$ [[#References|[a4]]]. Albert–Zassenhaus algebras have subalgebras of codimension $2$. Any automorphism of $W _ { 1 } ( m )$ is induced by an admissible automorphism of $O _ { 1 } ( m ),$ i.e., by an automorphism $\psi : O _ { 1 } ( m ) \rightarrow O _ { 1 } ( m )$ such that $\psi ( x )$ is a linear combination of $x ^ { ( i ) }$, where $i \neq 0$, $p ^ { k }$, $0 < k < m$. There are infinitely many non-conjugate Cartan subalgebras (cf. also [[Cartan subalgebra|Cartan subalgebra]]) of dimension $p ^ { m - 1 }$ if $m > 2$, and exactly two non-conjugate Cartan subalgebras of dimension $p$ if $m = 2$ [[#References|[a2]]]. The algebra of outer derivations of $W _ { 1 } ( m )$ is $( m - 1 )$-dimensional and generated by the derivations $\left\{ \text { ad } e _ { - 1} ^ { p^k } : 0 < k < m \right\}$. The algebra $W _ { 1 } ( m )$ has a $( 3 m - 2 )$-parametric deformation [[#References|[a6]]]. A non-split central extension of $W _ { 1 } ( m )$ was constructed first by R. Block in 1968 [[#References|[a1]]]. The characteristic-$0$ infinite-dimensional analogue of this extension is well known as the [[Virasoro algebra|Virasoro algebra]]. The list of irreducible $W _ { 1 } ( m )$-modules that have non-split extensions is the following: $M = K , \overline { U } _ { 1 } , U _ { - 1 } , U _ { 2 } , U _ { 3 } , U _ { 5 }$. All bilinear invariant forms of $W _ { 1 } ( m )$ are trivial, but it has a generalized [[Casimir element|Casimir element]] $c = \operatorname { ad } e _ { - 1 } ^ { p ^ { m } - 1 } ( e _ { p ^ { m } - 2 } ^ { ( p + 1 ) / 2 } )$. The centre of the [[Universal enveloping algebra|universal enveloping algebra]] is generated by the $p$-centre and the generalized Casimir elements [[#References|[a7]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.E. Block, "On the extension of Lie algebras" ''Canad. J. Math.'' , '''20''' (1968) pp. 1439–1450</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Brown, "Cartan subalgebras of Zassenhaus algebras" ''Canad. J. Math.'' , '''27''' : 5 (1975) pp. 1011–1021</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Ho-Jui Chang, "Über Wittsche Lie-Ringe" ''Abb. Math. Sem. Univ. Hamburg'' , '''14''' (1941) pp. 151–184</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A.S. Dzhumadil'daev, "Simple Lie algebras with a subalgebra of codimension 1" ''Russian Math. Surveys'' , '''40''' : 1 (1985) pp. 215–216 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.S. Dzhumadil'daev, "Cohomology and nonsplit extensions of modular Lie algebras" ''Contemp. Math.'' , '''131:2''' (1992) pp. 31–43</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A.S. Dzhumadil'daev, A.I. Kostrikin, "Deformations of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001094.png" />" ''Proc. Steklov Inst. Math.'' , '''148''' (1980) pp. 143–158 (In Russian)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> Y.B. Ermolaev, "On structure of the center of the universal enveloping algebra of a Zassenhaus algebra" ''Soviet Math. (Iz.VUZ)'' , '''20''' (1978) ''Izv. VUZ Mat.'' , '''12(199)''' (1978) pp. 46–59</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Zassenhaus, "Über Lie'she Ringe mit Primzahlcharacteristik" ''Abh. Math. Sem. Univ. Hamburg'' , '''13''' (1939) pp. 1–100</TD></TR></table> | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> R.E. Block, "On the extension of Lie algebras" ''Canad. J. Math.'' , '''20''' (1968) pp. 1439–1450</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> G. Brown, "Cartan subalgebras of Zassenhaus algebras" ''Canad. J. Math.'' , '''27''' : 5 (1975) pp. 1011–1021</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> Ho-Jui Chang, "Über Wittsche Lie-Ringe" ''Abb. Math. Sem. Univ. Hamburg'' , '''14''' (1941) pp. 151–184</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> A.S. Dzhumadil'daev, "Simple Lie algebras with a subalgebra of codimension 1" ''Russian Math. Surveys'' , '''40''' : 1 (1985) pp. 215–216 (In Russian)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> A.S. Dzhumadil'daev, "Cohomology and nonsplit extensions of modular Lie algebras" ''Contemp. Math.'' , '''131:2''' (1992) pp. 31–43</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> A.S. Dzhumadil'daev, A.I. Kostrikin, "Deformations of the Lie algebra $W _ { 1 } ( m )$" ''Proc. Steklov Inst. Math.'' , '''148''' (1980) pp. 143–158 (In Russian)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> Y.B. Ermolaev, "On structure of the center of the universal enveloping algebra of a Zassenhaus algebra" ''Soviet Math. (Iz.VUZ)'' , '''20''' (1978) ''Izv. VUZ Mat.'' , '''12(199)''' (1978) pp. 46–59</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> H. Zassenhaus, "Über Lie'she Ringe mit Primzahlcharacteristik" ''Abh. Math. Sem. Univ. Hamburg'' , '''13''' (1939) pp. 1–100</td></tr></table> |
A Lie algebra of special derivations of the divided power algebra
\begin{equation*} O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\} \end{equation*}
over a field $K$ of characteristic $p > 0$. It is usually denoted by $W _ { 1 } ( m )$, is $p ^ { m }$-dimensional and has a basis $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ with commutator
\begin{equation*} [ e _ { i } , e _ { j } ] = \left( \left( \begin{array} { c } { i + j + 1 } \\ { j } \end{array} \right) - \left( \begin{array} { c } { i + j + 1 } \\ { i } \end{array} \right) \right) e _ { i + j }. \end{equation*}
It also has another basis, $\{ f _ { \alpha } : \alpha \in \operatorname {GF} ( m ) \}$ (if $\operatorname{GF} ( m ) \subseteq K$), with commutator $[ f _ { \alpha } , f _ { \beta } ] = ( \beta - \alpha ) f _ { \alpha + \beta }$, where $\operatorname {GF} ( m )$ is a finite field of order $p ^ { m }$. Zassenhaus algebras appeared first in this form in 1939 [a8] (see also Witt algebra). $W _ { 1 } ( m )$ is simple if $p > 2$ (cf. also Simple algebra), has an ideal of codimension $1$ if $p = 2$, $m > 1$, and is $2$-dimensional non-Abelian if $p = 2$, $m = 1$. It is a Lie $p$-algebra if and only if $m = 1$. The $p$-structure on $W _ { 1 } ( 1 )$ can be given by $ e _{0} ^ { [ p ] } - e _ { 0 } = 0$, $e _ { i } ^ { p } = 0$, $i \neq 0$. By changing $\operatorname {GF} ( m )$ to other additive subgroup of $K$, or by changing the multiplication, one can get different algebras. For example, the multiplication
\begin{equation*} ( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }, \end{equation*}
where $h$ is an additive homomorphism of finite fields, gives rise to the Albert–Zassenhaus algebra.
Suppose that all algebras and modules are finite-dimensional and that the ground field $K$ is an algebraically closed field of characteristic $p > 3$.
Let $U _ { t }$ be the $W _ { 1 } ( m )$-module defined for $t \in K$ on the vector space $U = O _ { 1 } ( m )$ by
\begin{equation*} ( e _ { i } ) _ { t } x ^ { ( j ) } = \left( \left( \begin{array} { c } { i + j } \\ { i + 1 } \end{array} \right) + t \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right)\right) x ^ { ( i + j ) }. \end{equation*}
For example, $ U _{ - 1}$ and $U _ { 2 }$ are isomorphic to the adjoint and co-adjoint modules, $U _ { 1 }$ has an irreducible submodule $\overline { U } _ { 1 } = \left\{ x ^ { ( i ) } : 0 \leq i < p ^ { m } - 1 \right\}$, and $U _ { t }$ is irreducible if $t \neq 0,1$. Any irreducible restricted $W _ { 1 } ( 1 )$-module is isomorphic to one of the following modules: the $1$-dimensional trivial module $K$; the $( p - 1 )$-dimensional module $\overline { U } _ { 1 }$; or the $p$-dimensional module $U _ { t }$, $t \in \mathbf{Z} / p \mathbf{Z}$, $t \neq 0,1$. The maximal dimension of irreducible $W _ { 1 } ( m )$-modules is $p ^ { ( p ^ { m } - 1 ) / 2 }$, but there may be infinitely many non-isomorphic irreducible modules of given dimension. The minimal dimension of irreducible non-trivial $W _ { 1 } ( m )$-modules is $p ^ { m } - 1$, and any irreducible module of dimension $p ^ { m } - 1$ is isomorphic to $\overline { U } _ { 1 }$. Any irreducible $W _ { 1 } ( 1 )$-module with a non-trivial action of $e _ { p - 2}$ is irreducible as a module over the maximal subalgebra ${\cal L} _ { 0 } = \langle e _ { i } : i \geq 0 \rangle$. In any case, any non-restricted irreducible $W _ { 1 } ( 1 )$-module is induced by some irreducible submodule of ${\cal L}_0$ [a3].
Any simple Lie algebra of dimension $> 3$ with a subalgebra of codimension $1$ is isomorphic to $W _ { 1 } ( m )$ for some $m$ [a4]. Albert–Zassenhaus algebras have subalgebras of codimension $2$. Any automorphism of $W _ { 1 } ( m )$ is induced by an admissible automorphism of $O _ { 1 } ( m ),$ i.e., by an automorphism $\psi : O _ { 1 } ( m ) \rightarrow O _ { 1 } ( m )$ such that $\psi ( x )$ is a linear combination of $x ^ { ( i ) }$, where $i \neq 0$, $p ^ { k }$, $0 < k < m$. There are infinitely many non-conjugate Cartan subalgebras (cf. also Cartan subalgebra) of dimension $p ^ { m - 1 }$ if $m > 2$, and exactly two non-conjugate Cartan subalgebras of dimension $p$ if $m = 2$ [a2]. The algebra of outer derivations of $W _ { 1 } ( m )$ is $( m - 1 )$-dimensional and generated by the derivations $\left\{ \text { ad } e _ { - 1} ^ { p^k } : 0 < k < m \right\}$. The algebra $W _ { 1 } ( m )$ has a $( 3 m - 2 )$-parametric deformation [a6]. A non-split central extension of $W _ { 1 } ( m )$ was constructed first by R. Block in 1968 [a1]. The characteristic-$0$ infinite-dimensional analogue of this extension is well known as the Virasoro algebra. The list of irreducible $W _ { 1 } ( m )$-modules that have non-split extensions is the following: $M = K , \overline { U } _ { 1 } , U _ { - 1 } , U _ { 2 } , U _ { 3 } , U _ { 5 }$. All bilinear invariant forms of $W _ { 1 } ( m )$ are trivial, but it has a generalized Casimir element $c = \operatorname { ad } e _ { - 1 } ^ { p ^ { m } - 1 } ( e _ { p ^ { m } - 2 } ^ { ( p + 1 ) / 2 } )$. The centre of the universal enveloping algebra is generated by the $p$-centre and the generalized Casimir elements [a7].
References
[a1] | R.E. Block, "On the extension of Lie algebras" Canad. J. Math. , 20 (1968) pp. 1439–1450 |
[a2] | G. Brown, "Cartan subalgebras of Zassenhaus algebras" Canad. J. Math. , 27 : 5 (1975) pp. 1011–1021 |
[a3] | Ho-Jui Chang, "Über Wittsche Lie-Ringe" Abb. Math. Sem. Univ. Hamburg , 14 (1941) pp. 151–184 |
[a4] | A.S. Dzhumadil'daev, "Simple Lie algebras with a subalgebra of codimension 1" Russian Math. Surveys , 40 : 1 (1985) pp. 215–216 (In Russian) |
[a5] | A.S. Dzhumadil'daev, "Cohomology and nonsplit extensions of modular Lie algebras" Contemp. Math. , 131:2 (1992) pp. 31–43 |
[a6] | A.S. Dzhumadil'daev, A.I. Kostrikin, "Deformations of the Lie algebra $W _ { 1 } ( m )$" Proc. Steklov Inst. Math. , 148 (1980) pp. 143–158 (In Russian) |
[a7] | Y.B. Ermolaev, "On structure of the center of the universal enveloping algebra of a Zassenhaus algebra" Soviet Math. (Iz.VUZ) , 20 (1978) Izv. VUZ Mat. , 12(199) (1978) pp. 46–59 |
[a8] | H. Zassenhaus, "Über Lie'she Ringe mit Primzahlcharacteristik" Abh. Math. Sem. Univ. Hamburg , 13 (1939) pp. 1–100 |