Namespaces
Variants
Actions

Difference between revisions of "Croke isoperimetric inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 20 formulas out of 20 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202701.png" /> be a bounded domain in a complete [[Riemannian manifold|Riemannian manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202702.png" /> with smooth boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202703.png" />. A unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202704.png" /> is said to be a direction of visibility at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202705.png" /> if the arc of the geodesic ray <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202706.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202707.png" /> up to the first boundary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202708.png" /> is the shortest connection between the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c1202709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027010.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027011.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027012.png" /> be the set of directions of visibility at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027013.png" /> and define the minimum visibility angle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027014.png" /> by
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027015.png" /></td> </tr></table>
+
Out of 20 formulas, 20 were replaced by TEX code.-->
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027016.png" />.
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Let $\Omega$ be a bounded domain in a complete [[Riemannian manifold|Riemannian manifold]] $M = M ^ { n }$ with smooth boundary $\partial \Omega$. A unit vector $v \in T _ { p } M$ is said to be a direction of visibility at $p \in \Omega$ if the arc of the geodesic ray $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ from $p$ up to the first boundary point $\gamma ( s ) \in \partial \Omega$ is the shortest connection between the points $p$ and $\gamma ( s )$, i.e. $s = \operatorname { dist } ( p , \gamma ( s ) )$. Let $\Omega _ { p } \subset T _ { p } M$ be the set of directions of visibility at $p$ and define the minimum visibility angle of $\Omega$ by
 +
 
 +
\begin{equation*} \omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) }, \end{equation*}
 +
 
 +
where $\alpha ( k ) = \operatorname{Vol} ( S ^ { k } )$.
  
 
Then the following inequalities hold:
 
Then the following inequalities hold:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
\begin{equation} \tag{a1} \frac { \text { Vol } ( \partial \Omega ) } { \text { Vol } ( \Omega ) } \geq \frac { c _ { 1 } } { \operatorname { diam } \Omega } \cdot \omega , \quad  c_ { 1 } = \frac { 2 \pi \alpha ( n - 1 ) } { \alpha ( n ) }, \end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} \frac { \operatorname {Vol} ( \partial \Omega ) ^ { n } } { \operatorname {Vol} ( \Omega ) ^ { n - 1 } } \geq c  _ { 2 } \cdot \omega ^ { n + 1 } , \quad  c _ { 2 } = \frac { \alpha ( n - 1 ) ^ { n } } { \left( \frac { \alpha ( n ) } { 2 } \right) ^ { n - 1 } }. \end{equation}
  
Both inequalities (a1) and (a2) are sharp in the sense that equality holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027020.png" /> is a hemi-sphere of a sphere of constant positive curvature.
+
Both inequalities (a1) and (a2) are sharp in the sense that equality holds if and only if $\omega = 1$ and $\Omega$ is a hemi-sphere of a sphere of constant positive curvature.
  
 
In the proof of the second inequality, special versions of the [[Berger inequality|Berger inequality]] and the [[Kazdan inequality|Kazdan inequality]] are used.
 
In the proof of the second inequality, special versions of the [[Berger inequality|Berger inequality]] and the [[Kazdan inequality|Kazdan inequality]] are used.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.B. Croke,  "Some isoperimetric inequalities and eigenvalue estimates"  ''Ann. Sci. Ecole Norm. Sup.'' , '''13'''  (1980)  pp. 419–435</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  I. Chavel,  "Riemannian geometry: A modern introduction" , Cambridge Univ. Press  (1995)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  C.B. Croke,  "Some isoperimetric inequalities and eigenvalue estimates"  ''Ann. Sci. Ecole Norm. Sup.'' , '''13'''  (1980)  pp. 419–435</td></tr></table>

Latest revision as of 16:56, 1 July 2020

Let $\Omega$ be a bounded domain in a complete Riemannian manifold $M = M ^ { n }$ with smooth boundary $\partial \Omega$. A unit vector $v \in T _ { p } M$ is said to be a direction of visibility at $p \in \Omega$ if the arc of the geodesic ray $t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$ from $p$ up to the first boundary point $\gamma ( s ) \in \partial \Omega$ is the shortest connection between the points $p$ and $\gamma ( s )$, i.e. $s = \operatorname { dist } ( p , \gamma ( s ) )$. Let $\Omega _ { p } \subset T _ { p } M$ be the set of directions of visibility at $p$ and define the minimum visibility angle of $\Omega$ by

\begin{equation*} \omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) }, \end{equation*}

where $\alpha ( k ) = \operatorname{Vol} ( S ^ { k } )$.

Then the following inequalities hold:

\begin{equation} \tag{a1} \frac { \text { Vol } ( \partial \Omega ) } { \text { Vol } ( \Omega ) } \geq \frac { c _ { 1 } } { \operatorname { diam } \Omega } \cdot \omega , \quad c_ { 1 } = \frac { 2 \pi \alpha ( n - 1 ) } { \alpha ( n ) }, \end{equation}

\begin{equation} \tag{a2} \frac { \operatorname {Vol} ( \partial \Omega ) ^ { n } } { \operatorname {Vol} ( \Omega ) ^ { n - 1 } } \geq c _ { 2 } \cdot \omega ^ { n + 1 } , \quad c _ { 2 } = \frac { \alpha ( n - 1 ) ^ { n } } { \left( \frac { \alpha ( n ) } { 2 } \right) ^ { n - 1 } }. \end{equation}

Both inequalities (a1) and (a2) are sharp in the sense that equality holds if and only if $\omega = 1$ and $\Omega$ is a hemi-sphere of a sphere of constant positive curvature.

In the proof of the second inequality, special versions of the Berger inequality and the Kazdan inequality are used.

References

[a1] I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995)
[a2] C.B. Croke, "Some isoperimetric inequalities and eigenvalue estimates" Ann. Sci. Ecole Norm. Sup. , 13 (1980) pp. 419–435
How to Cite This Entry:
Croke isoperimetric inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Croke_isoperimetric_inequality&oldid=17819
This article was adapted from an original article by H. Kaul (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article