Namespaces
Variants
Actions

Difference between revisions of "Lie algebroid"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 126 formulas out of 126 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 126 formulas, 126 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
Lie algebroids were first introduced and studied by J. Pradines [[#References|[a11]]], following work by Ch. Ehresmann and P. Libermann on differentiable groupoids (later called Lie groupoids). Just as Lie algebras are the infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of Lie groupoids (cf. also [[Lie group|Lie group]]). They are generalizations of both Lie algebras and tangent vector bundles (cf. also [[Lie algebra|Lie algebra]]; [[Vector bundle|Vector bundle]]; [[Tangent bundle|Tangent bundle]]). For a comprehensive treatment and lists of references, see [[#References|[a8]]], [[#References|[a9]]]. See also [[#References|[a1]]], [[#References|[a4]]], [[#References|[a6]]], [[#References|[a13]]], [[#References|[a14]]].
 
Lie algebroids were first introduced and studied by J. Pradines [[#References|[a11]]], following work by Ch. Ehresmann and P. Libermann on differentiable groupoids (later called Lie groupoids). Just as Lie algebras are the infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of Lie groupoids (cf. also [[Lie group|Lie group]]). They are generalizations of both Lie algebras and tangent vector bundles (cf. also [[Lie algebra|Lie algebra]]; [[Vector bundle|Vector bundle]]; [[Tangent bundle|Tangent bundle]]). For a comprehensive treatment and lists of references, see [[#References|[a8]]], [[#References|[a9]]]. See also [[#References|[a1]]], [[#References|[a4]]], [[#References|[a6]]], [[#References|[a13]]], [[#References|[a14]]].
  
A real Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200901.png" /> is a smooth real [[Vector bundle|vector bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200902.png" /> over a base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200903.png" />, with a real [[Lie algebra|Lie algebra]] structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200904.png" /> on the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200905.png" /> of smooth global sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200906.png" />, and a morphism of vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200907.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200908.png" /> is the tangent bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l1200909.png" />, called the anchor, such that
+
A real Lie algebroid $( A , [ \cdot , \cdot ] _ { A } , q _ { A } )$ is a smooth real [[Vector bundle|vector bundle]] $A$ over a base $M$, with a real [[Lie algebra|Lie algebra]] structure $[ . ,. ]_A$ on the vector space $\Gamma ( A )$ of smooth global sections of $A$, and a morphism of vector bundles $q _ { A } : A \rightarrow T M$, where $T M$ is the tangent bundle of $M$, called the anchor, such that
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009010.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009012.png" />;
+
$[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { A } ( X ) . f ) Y$, for all $X , Y \in \Gamma ( A )$ and $f \in C ^ { \infty } ( M )$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009013.png" /> defines a Lie algebra homomorphism from the Lie algebra of sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009014.png" />, with Lie bracket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009015.png" />, into the Lie algebra of vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009016.png" />. Complex Lie algebroid structures [[#References|[a1]]] on complex vector bundles over real bases can be defined similarly, replacing the tangent bundle of the base by the complexified tangent bundle.
+
$q_ { A }$ defines a Lie algebra homomorphism from the Lie algebra of sections of $A$, with Lie bracket $[ . ,. ]_A$, into the Lie algebra of vector fields on $M$. Complex Lie algebroid structures [[#References|[a1]]] on complex vector bundles over real bases can be defined similarly, replacing the tangent bundle of the base by the complexified tangent bundle.
  
The space of sections of a Lie algebroid is a Lie–Rinehart algebra, also called a Lie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009018.png" />-ring or a Lie pseudo-algebra. (See [[#References|[a4]]], [[#References|[a6]]], [[#References|[a9]]].) More precisely, it is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009019.png" />-Lie algebra, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009020.png" /> is the field of real (or complex) numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009021.png" /> is the algebra of functions on the base manifold. In fact, the Lie–Rinehart algebras are the algebraic counterparts of the Lie algebroids, just as the modules over a ring are the algebraic counterparts of the vector bundles.
+
The space of sections of a Lie algebroid is a Lie–Rinehart algebra, also called a Lie $d$-ring or a Lie pseudo-algebra. (See [[#References|[a4]]], [[#References|[a6]]], [[#References|[a9]]].) More precisely, it is a $( k , \mathcal A )$-Lie algebra, where $k$ is the field of real (or complex) numbers and $\mathcal{A}$ is the algebra of functions on the base manifold. In fact, the Lie–Rinehart algebras are the algebraic counterparts of the Lie algebroids, just as the modules over a ring are the algebraic counterparts of the vector bundles.
  
 
===Examples.===
 
===Examples.===
Line 14: Line 22:
 
1) A Lie algebroid over a one-point set, with the zero anchor, is a Lie algebra.
 
1) A Lie algebroid over a one-point set, with the zero anchor, is a Lie algebra.
  
2) The tangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009022.png" /> of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009023.png" />, with as bracket the Lie bracket of vector fields and with as anchor the identity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009024.png" />, is a Lie algebroid over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009025.png" />. Any integrable sub-bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009026.png" />, in particular the tangent bundle along the leaves of a [[Foliation|foliation]], is also a Lie algebroid.
+
2) The tangent bundle $T M$ of a manifold $M$, with as bracket the Lie bracket of vector fields and with as anchor the identity of $T M$, is a Lie algebroid over $M$. Any integrable sub-bundle of $T M$, in particular the tangent bundle along the leaves of a [[Foliation|foliation]], is also a Lie algebroid.
  
 
3) A vector bundle with a smoothly varying Lie algebra structure on the fibres (in particular, a Lie-algebra bundle [[#References|[a8]]]) is a Lie algebroid, with pointwise bracket of sections and zero anchor.
 
3) A vector bundle with a smoothly varying Lie algebra structure on the fibres (in particular, a Lie-algebra bundle [[#References|[a8]]]) is a Lie algebroid, with pointwise bracket of sections and zero anchor.
  
4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009027.png" /> is a Poisson manifold, then the cotangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009029.png" /> is, in a natural way, a Lie algebroid over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009030.png" />. The anchor is the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009031.png" /> defined by the Poisson bivector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009032.png" />. The Lie bracket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009033.png" /> of differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009034.png" />-forms satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009035.png" />, for any functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009037.png" /> is the Poisson bracket (cf. [[Poisson brackets|Poisson brackets]]) of functions, defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009038.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009039.png" /> is non-degenerate, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009040.png" /> is a [[Symplectic manifold|symplectic manifold]] (cf. also [[Symplectic structure|Symplectic structure]]) and this Lie algebra structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009041.png" /> is isomorphic to that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009042.png" />. For references to the early occurrences of this bracket, which seems to have first appeared in [[#References|[a3]]], see [[#References|[a4]]], [[#References|[a6]]] and [[#References|[a13]]]. It was shown in [[#References|[a2]]] that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009043.png" /> is a Lie algebroid bracket on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009044.png" />.
+
4) If $M$ is a Poisson manifold, then the cotangent bundle $T ^ { * } M$ of $M$ is, in a natural way, a Lie algebroid over $M$. The anchor is the mapping $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ defined by the Poisson bivector $P$. The Lie bracket $[ . ,. ]_P$ of differential $1$-forms satisfies $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$, for any functions $f , g \in C ^ { \infty } ( M )$, where $\{ f , g \} _ { P } = P ( d f , d g )$ is the Poisson bracket (cf. [[Poisson brackets|Poisson brackets]]) of functions, defined by $P$. When $P$ is non-degenerate, $M$ is a [[Symplectic manifold|symplectic manifold]] (cf. also [[Symplectic structure|Symplectic structure]]) and this Lie algebra structure of $\Gamma ( T ^ { * } M )$ is isomorphic to that of $\Gamma ( T M )$. For references to the early occurrences of this bracket, which seems to have first appeared in [[#References|[a3]]], see [[#References|[a4]]], [[#References|[a6]]] and [[#References|[a13]]]. It was shown in [[#References|[a2]]] that $[ . ,. ]_P$ is a Lie algebroid bracket on $T ^ { * } M$.
  
5) The Lie algebroid of a Lie groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009045.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009046.png" /> is the source mapping and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009047.png" /> is the target mapping [[#References|[a11]]], [[#References|[a8]]], [[#References|[a13]]]. It is defined as the [[Normal bundle|normal bundle]] along the base of the groupoid, whose sections can be identified with the right-invariant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009048.png" />-vertical vector fields. The bracket is induced by the Lie bracket of vector fields on the groupoid, and the anchor is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009049.png" />.
+
5) The Lie algebroid of a Lie groupoid $( \mathcal{G}, \alpha , \beta )$, where $\alpha$ is the source mapping and $\beta$ is the target mapping [[#References|[a11]]], [[#References|[a8]]], [[#References|[a13]]]. It is defined as the [[Normal bundle|normal bundle]] along the base of the groupoid, whose sections can be identified with the right-invariant, $\alpha$-vertical vector fields. The bracket is induced by the Lie bracket of vector fields on the groupoid, and the anchor is $T \beta$.
  
6) The Atiyah sequence. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009050.png" /> is a principal bundle with structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009051.png" />, base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009052.png" /> and projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009053.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009054.png" />-invariant vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009055.png" /> are the sections of a vector bundle with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009056.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009057.png" />, and sometimes called the Atiyah bundle of the principal bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009058.png" />. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009059.png" />, and with surjective anchor induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009060.png" />. The kernel of the anchor is the adjoint bundle, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009061.png" />. Splittings of the anchor are connections on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009062.png" /> (cf. also [[Connection|Connection]]). The Atiyah bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009063.png" /> is the Lie algebroid of the Ehresmann gauge groupoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009064.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009065.png" /> is the frame bundle of a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009066.png" />, then the sections of the Atiyah bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009067.png" /> are the covariant differential operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009068.png" />, in the sense of [[#References|[a8]]].
+
6) The Atiyah sequence. If $P$ is a principal bundle with structure group $G$, base $M$ and projection $p$, the $G$-invariant vector fields on $P$ are the sections of a vector bundle with base $M$, denoted by $T P / G$, and sometimes called the Atiyah bundle of the principal bundle $P$. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of vector fields on $P$, and with surjective anchor induced by $T _ { p }$. The kernel of the anchor is the adjoint bundle, $( P \times \mathfrak g ) / G$. Splittings of the anchor are connections on $P$ (cf. also [[Connection|Connection]]). The Atiyah bundle of $P$ is the Lie algebroid of the Ehresmann gauge groupoid $( P \times P ) / G$. If $P$ is the frame bundle of a vector bundle $E$, then the sections of the Atiyah bundle of $P$ are the covariant differential operators on $E$, in the sense of [[#References|[a8]]].
  
7) Other examples are: the trivial Lie algebroids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009069.png" />; the transformation Lie algebroids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009070.png" />, where the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009071.png" /> acts on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009072.png" />; the deformation Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009073.png" /> of a Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009075.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009076.png" />, is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009077.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009078.png" /> is isomorphic to the vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009079.png" /> with the Abelian Lie algebroid structure (zero bracket and zero anchor); the prolongation Lie algebroids of a Lie algebroid, etc.
+
7) Other examples are: the trivial Lie algebroids $TM \times \mathfrak{g}$; the transformation Lie algebroids $M \times \mathfrak { g } \rightarrow M$, where the Lie algebra $\frak g$ acts on the manifold $M$; the deformation Lie algebroid $A \times \mathbf{R}$ of a Lie algebroid $A$, where $A \times \{ \hbar \}$, for $\hbar \neq 0$, is isomorphic to $A$, and $A \times \{ 0 \}$ is isomorphic to the vector bundle $A$ with the Abelian Lie algebroid structure (zero bracket and zero anchor); the prolongation Lie algebroids of a Lie algebroid, etc.
  
 
===de Rham differential.===
 
===de Rham differential.===
Given any Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009080.png" />, a differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009081.png" /> is defined on the graded algebra of sections of the exterior algebra of the dual vector bundle, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009082.png" />, called the de Rham differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009083.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009084.png" /> can be considered as the algebra of functions on a [[Super-manifold|super-manifold]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009085.png" /> being an odd vector field with square zero [[#References|[a12]]].
+
Given any Lie algebroid $A$, a differential $d _ { A }$ is defined on the graded algebra of sections of the exterior algebra of the dual vector bundle, $\Gamma ( \wedge A ^ { * } )$, called the de Rham differential of $A$. Then $\Gamma ( \wedge A ^ { * } )$ can be considered as the algebra of functions on a [[Super-manifold|super-manifold]], $d _ { A }$ being an odd vector field with square zero [[#References|[a12]]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009086.png" /> is a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009087.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009088.png" /> is the Chevalley–Eilenberg cohomology operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009089.png" />.
+
If $A$ is a Lie algebra $\frak g$, then $d _ { A }$ is the Chevalley–Eilenberg cohomology operator on $\wedge ( \mathfrak { g } ^ { * } )$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009090.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009091.png" /> is the usual de Rham differential on forms.
+
If $A = T M$, then $d _ { A }$ is the usual de Rham differential on forms.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009092.png" /> is the cotangent bundle of a Poisson manifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009093.png" /> is the Lichnerowicz–Poisson differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009094.png" /> on fields of multi-vectors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009095.png" />.
+
If $A = T ^ { * } M$ is the cotangent bundle of a Poisson manifold, then $d _ { A }$ is the Lichnerowicz–Poisson differential $[ P , . ] _ { A }$ on fields of multi-vectors on $M$.
  
 
===Schouten algebra.===
 
===Schouten algebra.===
Given any Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009096.png" />, there is a Gerstenhaber algebra structure (see [[Poisson algebra|Poisson algebra]]), denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009097.png" />, on the graded algebra of sections of the [[Exterior algebra|exterior algebra]] of the vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009099.png" />. With this graded Lie bracket, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090100.png" /> is called the Schouten algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090101.png" />.
+
Given any Lie algebroid $A$, there is a Gerstenhaber algebra structure (see [[Poisson algebra|Poisson algebra]]), denoted by $[ . ,. ]_A$, on the graded algebra of sections of the [[Exterior algebra|exterior algebra]] of the vector bundle $A$, $\Gamma ( \wedge A )$. With this graded Lie bracket, $\Gamma ( \wedge A )$ is called the Schouten algebra of $A$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090102.png" /> is a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090103.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090104.png" /> is the algebraic Schouten bracket on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090105.png" />.
+
If $A$ is a Lie algebra $\frak g$, then $[ . ,. ]_A$ is the algebraic Schouten bracket on $\wedge \mathfrak{g}$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090106.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090107.png" /> is the usual Schouten bracket of fields of multi-vectors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090108.png" />.
+
If $A = T M$, then $[ . ,. ]_A$ is the usual Schouten bracket of fields of multi-vectors on $M$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090109.png" /> is the cotangent bundle of a Poisson manifold, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090110.png" /> is the Koszul bracket [[#References|[a7]]], [[#References|[a13]]], [[#References|[a5]]] of differential forms.
+
If $A = T ^ { * } M$ is the cotangent bundle of a Poisson manifold, then $[ . ,. ]_A$ is the Koszul bracket [[#References|[a7]]], [[#References|[a13]]], [[#References|[a5]]] of differential forms.
  
 
===Morphisms of Lie algebroids and the linear Poisson structure on the dual.===
 
===Morphisms of Lie algebroids and the linear Poisson structure on the dual.===
A base-preserving morphism from a Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090111.png" /> to a Lie algebroid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090112.png" />, over the same base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090113.png" />, is a base-preserving vector-bundle morphism, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090114.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090115.png" />, inducing a Lie-algebra morphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090116.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090117.png" />.
+
A base-preserving morphism from a Lie algebroid $A _ { 1 }$ to a Lie algebroid $A _ { 2 }$, over the same base $M$, is a base-preserving vector-bundle morphism, $\mu : A _ { 1 } \rightarrow A _ { 2 }$, such that $q _ { A_ { 2 } } \circ \mu = q _ { A _ { 1 } }$, inducing a Lie-algebra morphism from $\Gamma ( A _ { 1 } )$ to $\Gamma ( A _ { 2 } )$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090118.png" /> is a Lie algebroid, the dual vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090119.png" /> is a Poisson vector bundle. This means that the total space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090120.png" /> has a Poisson structure such that the [[Poisson brackets|Poisson brackets]] of two functions which are linear on the fibres is linear on the fibres. A base-preserving morphism from a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090121.png" /> to a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090122.png" /> is a morphism of Lie algebroids if and only if its transpose is a Poisson morphism.
+
If $A$ is a Lie algebroid, the dual vector bundle $A ^ { * }$ is a Poisson vector bundle. This means that the total space of $A ^ { * }$ has a Poisson structure such that the [[Poisson brackets|Poisson brackets]] of two functions which are linear on the fibres is linear on the fibres. A base-preserving morphism from a vector bundle $A _ { 1 }$ to a vector bundle $A _ { 2 }$ is a morphism of Lie algebroids if and only if its transpose is a Poisson morphism.
  
 
==Lie bi-algebroids.==
 
==Lie bi-algebroids.==
These are pairs of Lie algebroids <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090123.png" /> in duality satisfying the compatibility condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090124.png" /> be a derivation of the graded Lie bracket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090125.png" /> [[#References|[a10]]], [[#References|[a5]]]. They generalize the Lie bi-algebras in the sense of V.G. Drinfel'd (see [[Quantum groups|Quantum groups]] and [[Poisson Lie group|Poisson Lie group]]) and also the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090126.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l120090127.png" /> is a Poisson manifold.
+
These are pairs of Lie algebroids $( A , A ^ { * } )$ in duality satisfying the compatibility condition that $d _ { A } *$ be a derivation of the graded Lie bracket $[ . ,. ]_A$ [[#References|[a10]]], [[#References|[a5]]]. They generalize the Lie bi-algebras in the sense of V.G. Drinfel'd (see [[Quantum groups|Quantum groups]] and [[Poisson Lie group|Poisson Lie group]]) and also the pair $( T M , T ^ { * } M )$, where $M$ is a Poisson manifold.
  
 
There is no analogue to Lie's third theorem (cf. also [[Lie theorem|Lie theorem]]) in the case of Lie algebroids, since not every Lie algebroid can be integrated to a global Lie groupoid, although there are local versions of this result. (See [[#References|[a8]]], [[#References|[a1]]].)
 
There is no analogue to Lie's third theorem (cf. also [[Lie theorem|Lie theorem]]) in the case of Lie algebroids, since not every Lie algebroid can be integrated to a global Lie groupoid, although there are local versions of this result. (See [[#References|[a8]]], [[#References|[a1]]].)
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Cannas da Silva,   A. Weinstein,   "Geometric models for noncommutative algebras" , ''Berkeley Math. Lecture Notes'' , '''10''' , Amer. Math. Soc. (1999)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Coste,   P. Dazord,   A. Weinstein,   "Groupoïdes symplectiques" ''Publ. Dép. Math. Univ. Claude Bernard, Lyon I'' , '''2A''' (1987) pp. 1–62</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Fuchssteiner,   "The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems" ''Prog. Theor. Phys.'' , '''68''' (1982) pp. 1082–1104</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Huebschmann,   "Poisson cohomology and quantization" ''J. Reine Angew. Math.'' , '''408''' (1990) pp. 57–113</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach,   "Exact Gerstenhaber algebras and Lie bialgebroids" ''Acta Applic. Math.'' , '''41''' (1995) pp. 153–165</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach,   F. Magri,   "Poisson–Nijenhuis structures" ''Ann. Inst. H. Poincaré Phys. Theor.'' , '''53''' (1990) pp. 35–81</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J.-L. Koszul,   "Crochet de Schouten–Nijenhuis et cohomologie" ''Astérisque, Hors Sér.'' (1985) pp. 257–271</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> K. Mackenzie,   "Lie groupoids and Lie algebroids in differential geometry" , Cambridge Univ. Press (1987)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> K. Mackenzie,   "Lie algebroids and Lie pseudoalgebras" ''Bull. London Math. Soc.'' , '''27''' (1995) pp. 97–147</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> K. Mackenzie,   P. Xu,   "Lie bialgebroids and Poisson groupoids" ''Duke Math. J.'' , '''73''' (1994) pp. 415–452</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> J. Pradines,   "Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux" ''C.R. Acad. Sci. Paris'' , '''264 A''' (1967) pp. 245–248</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Vaintrob,   "Lie algebroids and homological vector fields" ''Russian Math. Surveys'' , '''52''' (1997) pp. 428–429</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> I. Vaisman,   "Lectures on the geometry of Poisson manifolds" , Birkhäuser (1994)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> A. Weinstein,   "Poisson geometry" ''Diff. Geom. Appl.'' , '''9''' (1998) pp. 213–238</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top"> A. Cannas da Silva, A. Weinstein, "Geometric models for noncommutative algebras" , ''Berkeley Math. Lecture Notes'' , '''10''' , Amer. Math. Soc. (1999) {{MR|}} {{ZBL|1135.58300}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> A. Coste, P. Dazord, A. Weinstein, "Groupoïdes symplectiques" ''Publ. Dép. Math. Univ. Claude Bernard, Lyon I'' , '''2A''' (1987) pp. 1–62 {{MR|0996653}} {{ZBL|0668.58017}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> B. Fuchssteiner, "The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems" ''Prog. Theor. Phys.'' , '''68''' (1982) pp. 1082–1104 {{MR|0688120}} {{ZBL|1098.37540}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> J. Huebschmann, "Poisson cohomology and quantization" ''J. Reine Angew. Math.'' , '''408''' (1990) pp. 57–113 {{MR|1058984}} {{ZBL|0699.53037}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> Y. Kosmann-Schwarzbach, "Exact Gerstenhaber algebras and Lie bialgebroids" ''Acta Applic. Math.'' , '''41''' (1995) pp. 153–165 {{MR|}} {{ZBL|0837.17014}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> Y. Kosmann-Schwarzbach, F. Magri, "Poisson–Nijenhuis structures" ''Ann. Inst. H. Poincaré Phys. Theor.'' , '''53''' (1990) pp. 35–81 {{MR|1077465}} {{ZBL|0707.58048}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> J.-L. Koszul, "Crochet de Schouten–Nijenhuis et cohomologie" ''Astérisque, Hors Sér.'' (1985) pp. 257–271 {{MR|0837203}} {{ZBL|0615.58029}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> K. Mackenzie, "Lie groupoids and Lie algebroids in differential geometry" , Cambridge Univ. Press (1987) {{MR|0896907}} {{ZBL|0683.53029}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> K. Mackenzie, "Lie algebroids and Lie pseudoalgebras" ''Bull. London Math. Soc.'' , '''27''' (1995) pp. 97–147 {{MR|1325261}} {{ZBL|0829.22001}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> K. Mackenzie, P. Xu, "Lie bialgebroids and Poisson groupoids" ''Duke Math. J.'' , '''73''' (1994) pp. 415–452 {{MR|1262213}} {{ZBL|0844.22005}} </td></tr><tr><td valign="top">[a11]</td> <td valign="top"> J. Pradines, "Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux" ''C.R. Acad. Sci. Paris'' , '''264 A''' (1967) pp. 245–248 {{MR|0216409}} {{ZBL|0154.21704}} </td></tr><tr><td valign="top">[a12]</td> <td valign="top"> A. Vaintrob, "Lie algebroids and homological vector fields" ''Russian Math. Surveys'' , '''52''' (1997) pp. 428–429 {{MR|1480150}} {{ZBL|0955.58017}} </td></tr><tr><td valign="top">[a13]</td> <td valign="top"> I. Vaisman, "Lectures on the geometry of Poisson manifolds" , Birkhäuser (1994) {{MR|1269545}} {{ZBL|0810.53019}} </td></tr><tr><td valign="top">[a14]</td> <td valign="top"> A. Weinstein, "Poisson geometry" ''Diff. Geom. Appl.'' , '''9''' (1998) pp. 213–238 {{MR|1636305}} {{ZBL|0930.37032}} </td></tr></table>

Latest revision as of 16:55, 1 July 2020

Lie algebroids were first introduced and studied by J. Pradines [a11], following work by Ch. Ehresmann and P. Libermann on differentiable groupoids (later called Lie groupoids). Just as Lie algebras are the infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of Lie groupoids (cf. also Lie group). They are generalizations of both Lie algebras and tangent vector bundles (cf. also Lie algebra; Vector bundle; Tangent bundle). For a comprehensive treatment and lists of references, see [a8], [a9]. See also [a1], [a4], [a6], [a13], [a14].

A real Lie algebroid $( A , [ \cdot , \cdot ] _ { A } , q _ { A } )$ is a smooth real vector bundle $A$ over a base $M$, with a real Lie algebra structure $[ . ,. ]_A$ on the vector space $\Gamma ( A )$ of smooth global sections of $A$, and a morphism of vector bundles $q _ { A } : A \rightarrow T M$, where $T M$ is the tangent bundle of $M$, called the anchor, such that

$[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { A } ( X ) . f ) Y$, for all $X , Y \in \Gamma ( A )$ and $f \in C ^ { \infty } ( M )$;

$q_ { A }$ defines a Lie algebra homomorphism from the Lie algebra of sections of $A$, with Lie bracket $[ . ,. ]_A$, into the Lie algebra of vector fields on $M$. Complex Lie algebroid structures [a1] on complex vector bundles over real bases can be defined similarly, replacing the tangent bundle of the base by the complexified tangent bundle.

The space of sections of a Lie algebroid is a Lie–Rinehart algebra, also called a Lie $d$-ring or a Lie pseudo-algebra. (See [a4], [a6], [a9].) More precisely, it is a $( k , \mathcal A )$-Lie algebra, where $k$ is the field of real (or complex) numbers and $\mathcal{A}$ is the algebra of functions on the base manifold. In fact, the Lie–Rinehart algebras are the algebraic counterparts of the Lie algebroids, just as the modules over a ring are the algebraic counterparts of the vector bundles.

Examples.

1) A Lie algebroid over a one-point set, with the zero anchor, is a Lie algebra.

2) The tangent bundle $T M$ of a manifold $M$, with as bracket the Lie bracket of vector fields and with as anchor the identity of $T M$, is a Lie algebroid over $M$. Any integrable sub-bundle of $T M$, in particular the tangent bundle along the leaves of a foliation, is also a Lie algebroid.

3) A vector bundle with a smoothly varying Lie algebra structure on the fibres (in particular, a Lie-algebra bundle [a8]) is a Lie algebroid, with pointwise bracket of sections and zero anchor.

4) If $M$ is a Poisson manifold, then the cotangent bundle $T ^ { * } M$ of $M$ is, in a natural way, a Lie algebroid over $M$. The anchor is the mapping $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ defined by the Poisson bivector $P$. The Lie bracket $[ . ,. ]_P$ of differential $1$-forms satisfies $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$, for any functions $f , g \in C ^ { \infty } ( M )$, where $\{ f , g \} _ { P } = P ( d f , d g )$ is the Poisson bracket (cf. Poisson brackets) of functions, defined by $P$. When $P$ is non-degenerate, $M$ is a symplectic manifold (cf. also Symplectic structure) and this Lie algebra structure of $\Gamma ( T ^ { * } M )$ is isomorphic to that of $\Gamma ( T M )$. For references to the early occurrences of this bracket, which seems to have first appeared in [a3], see [a4], [a6] and [a13]. It was shown in [a2] that $[ . ,. ]_P$ is a Lie algebroid bracket on $T ^ { * } M$.

5) The Lie algebroid of a Lie groupoid $( \mathcal{G}, \alpha , \beta )$, where $\alpha$ is the source mapping and $\beta$ is the target mapping [a11], [a8], [a13]. It is defined as the normal bundle along the base of the groupoid, whose sections can be identified with the right-invariant, $\alpha$-vertical vector fields. The bracket is induced by the Lie bracket of vector fields on the groupoid, and the anchor is $T \beta$.

6) The Atiyah sequence. If $P$ is a principal bundle with structure group $G$, base $M$ and projection $p$, the $G$-invariant vector fields on $P$ are the sections of a vector bundle with base $M$, denoted by $T P / G$, and sometimes called the Atiyah bundle of the principal bundle $P$. This vector bundle is a Lie algebroid, with bracket induced by the Lie bracket of vector fields on $P$, and with surjective anchor induced by $T _ { p }$. The kernel of the anchor is the adjoint bundle, $( P \times \mathfrak g ) / G$. Splittings of the anchor are connections on $P$ (cf. also Connection). The Atiyah bundle of $P$ is the Lie algebroid of the Ehresmann gauge groupoid $( P \times P ) / G$. If $P$ is the frame bundle of a vector bundle $E$, then the sections of the Atiyah bundle of $P$ are the covariant differential operators on $E$, in the sense of [a8].

7) Other examples are: the trivial Lie algebroids $TM \times \mathfrak{g}$; the transformation Lie algebroids $M \times \mathfrak { g } \rightarrow M$, where the Lie algebra $\frak g$ acts on the manifold $M$; the deformation Lie algebroid $A \times \mathbf{R}$ of a Lie algebroid $A$, where $A \times \{ \hbar \}$, for $\hbar \neq 0$, is isomorphic to $A$, and $A \times \{ 0 \}$ is isomorphic to the vector bundle $A$ with the Abelian Lie algebroid structure (zero bracket and zero anchor); the prolongation Lie algebroids of a Lie algebroid, etc.

de Rham differential.

Given any Lie algebroid $A$, a differential $d _ { A }$ is defined on the graded algebra of sections of the exterior algebra of the dual vector bundle, $\Gamma ( \wedge A ^ { * } )$, called the de Rham differential of $A$. Then $\Gamma ( \wedge A ^ { * } )$ can be considered as the algebra of functions on a super-manifold, $d _ { A }$ being an odd vector field with square zero [a12].

If $A$ is a Lie algebra $\frak g$, then $d _ { A }$ is the Chevalley–Eilenberg cohomology operator on $\wedge ( \mathfrak { g } ^ { * } )$.

If $A = T M$, then $d _ { A }$ is the usual de Rham differential on forms.

If $A = T ^ { * } M$ is the cotangent bundle of a Poisson manifold, then $d _ { A }$ is the Lichnerowicz–Poisson differential $[ P , . ] _ { A }$ on fields of multi-vectors on $M$.

Schouten algebra.

Given any Lie algebroid $A$, there is a Gerstenhaber algebra structure (see Poisson algebra), denoted by $[ . ,. ]_A$, on the graded algebra of sections of the exterior algebra of the vector bundle $A$, $\Gamma ( \wedge A )$. With this graded Lie bracket, $\Gamma ( \wedge A )$ is called the Schouten algebra of $A$.

If $A$ is a Lie algebra $\frak g$, then $[ . ,. ]_A$ is the algebraic Schouten bracket on $\wedge \mathfrak{g}$.

If $A = T M$, then $[ . ,. ]_A$ is the usual Schouten bracket of fields of multi-vectors on $M$.

If $A = T ^ { * } M$ is the cotangent bundle of a Poisson manifold, then $[ . ,. ]_A$ is the Koszul bracket [a7], [a13], [a5] of differential forms.

Morphisms of Lie algebroids and the linear Poisson structure on the dual.

A base-preserving morphism from a Lie algebroid $A _ { 1 }$ to a Lie algebroid $A _ { 2 }$, over the same base $M$, is a base-preserving vector-bundle morphism, $\mu : A _ { 1 } \rightarrow A _ { 2 }$, such that $q _ { A_ { 2 } } \circ \mu = q _ { A _ { 1 } }$, inducing a Lie-algebra morphism from $\Gamma ( A _ { 1 } )$ to $\Gamma ( A _ { 2 } )$.

If $A$ is a Lie algebroid, the dual vector bundle $A ^ { * }$ is a Poisson vector bundle. This means that the total space of $A ^ { * }$ has a Poisson structure such that the Poisson brackets of two functions which are linear on the fibres is linear on the fibres. A base-preserving morphism from a vector bundle $A _ { 1 }$ to a vector bundle $A _ { 2 }$ is a morphism of Lie algebroids if and only if its transpose is a Poisson morphism.

Lie bi-algebroids.

These are pairs of Lie algebroids $( A , A ^ { * } )$ in duality satisfying the compatibility condition that $d _ { A } *$ be a derivation of the graded Lie bracket $[ . ,. ]_A$ [a10], [a5]. They generalize the Lie bi-algebras in the sense of V.G. Drinfel'd (see Quantum groups and Poisson Lie group) and also the pair $( T M , T ^ { * } M )$, where $M$ is a Poisson manifold.

There is no analogue to Lie's third theorem (cf. also Lie theorem) in the case of Lie algebroids, since not every Lie algebroid can be integrated to a global Lie groupoid, although there are local versions of this result. (See [a8], [a1].)

References

[a1] A. Cannas da Silva, A. Weinstein, "Geometric models for noncommutative algebras" , Berkeley Math. Lecture Notes , 10 , Amer. Math. Soc. (1999) Zbl 1135.58300
[a2] A. Coste, P. Dazord, A. Weinstein, "Groupoïdes symplectiques" Publ. Dép. Math. Univ. Claude Bernard, Lyon I , 2A (1987) pp. 1–62 MR0996653 Zbl 0668.58017
[a3] B. Fuchssteiner, "The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems" Prog. Theor. Phys. , 68 (1982) pp. 1082–1104 MR0688120 Zbl 1098.37540
[a4] J. Huebschmann, "Poisson cohomology and quantization" J. Reine Angew. Math. , 408 (1990) pp. 57–113 MR1058984 Zbl 0699.53037
[a5] Y. Kosmann-Schwarzbach, "Exact Gerstenhaber algebras and Lie bialgebroids" Acta Applic. Math. , 41 (1995) pp. 153–165 Zbl 0837.17014
[a6] Y. Kosmann-Schwarzbach, F. Magri, "Poisson–Nijenhuis structures" Ann. Inst. H. Poincaré Phys. Theor. , 53 (1990) pp. 35–81 MR1077465 Zbl 0707.58048
[a7] J.-L. Koszul, "Crochet de Schouten–Nijenhuis et cohomologie" Astérisque, Hors Sér. (1985) pp. 257–271 MR0837203 Zbl 0615.58029
[a8] K. Mackenzie, "Lie groupoids and Lie algebroids in differential geometry" , Cambridge Univ. Press (1987) MR0896907 Zbl 0683.53029
[a9] K. Mackenzie, "Lie algebroids and Lie pseudoalgebras" Bull. London Math. Soc. , 27 (1995) pp. 97–147 MR1325261 Zbl 0829.22001
[a10] K. Mackenzie, P. Xu, "Lie bialgebroids and Poisson groupoids" Duke Math. J. , 73 (1994) pp. 415–452 MR1262213 Zbl 0844.22005
[a11] J. Pradines, "Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux" C.R. Acad. Sci. Paris , 264 A (1967) pp. 245–248 MR0216409 Zbl 0154.21704
[a12] A. Vaintrob, "Lie algebroids and homological vector fields" Russian Math. Surveys , 52 (1997) pp. 428–429 MR1480150 Zbl 0955.58017
[a13] I. Vaisman, "Lectures on the geometry of Poisson manifolds" , Birkhäuser (1994) MR1269545 Zbl 0810.53019
[a14] A. Weinstein, "Poisson geometry" Diff. Geom. Appl. , 9 (1998) pp. 213–238 MR1636305 Zbl 0930.37032
How to Cite This Entry:
Lie algebroid. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebroid&oldid=13860
This article was adapted from an original article by Yvette Kosmann-Schwarzbach (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article