Namespaces
Variants
Actions

Difference between revisions of "Massless Klein-Gordon equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 19 formulas out of 20 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 20 formulas, 19 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|partial}}
 
The [[Klein–Gordon equation|Klein–Gordon equation]] [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]
 
The [[Klein–Gordon equation|Klein–Gordon equation]] [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300901.png" /></td> </tr></table>
+
\begin{equation*} 0 = \left[ - \left( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi \right) ^ { 2 } + \right. \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300902.png" /></td> </tr></table>
+
\begin{equation*} \left.+ c ^ { 2 } \left( \nabla - i \frac { q e } { \hbar c } A \right) ^ { 2 } + \frac { c ^ { 4 } m ^ { 2 } } { \hbar ^ { 2 } } \right] \psi ( t , \mathbf{x} ) \end{equation*}
  
for the case where the mass parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300903.png" /> is equal to zero. The constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300904.png" /> stands for the speed of light, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300905.png" /> is the charge of the positron, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300906.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300907.png" /> is the [[Planck constant|Planck constant]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300908.png" /> are the time, respectively space, variables, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m1300909.png" /> is the imaginary unit. The (complex-valued) solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009010.png" /> describes the wave function of a relativistic spinless and massless particle with charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009011.png" /> in the exterior electro-magnetic field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009012.png" />. It is a second-order, [[Hyperbolic partial differential equation|hyperbolic partial differential equation]]. Solutions are being studied in, e.g., [[#References|[a4]]], [[#References|[a5]]].
+
for the case where the mass parameter $m$ is equal to zero. The constant $c$ stands for the speed of light, $e$ is the charge of the positron, $\hbar = h / 2 \pi$ where $h$ is the [[Planck constant|Planck constant]], $( t , \mathbf{x} )$ are the time, respectively space, variables, and $i$ is the imaginary unit. The (complex-valued) solution $\psi$ describes the wave function of a relativistic spinless and massless particle with charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009011.png"/> in the exterior electro-magnetic field $( \phi , \mathbf{A} )$. It is a second-order, [[Hyperbolic partial differential equation|hyperbolic partial differential equation]]. Solutions are being studied in, e.g., [[#References|[a4]]], [[#References|[a5]]].
  
If the outer field is zero, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009013.png" />, or the coupling of the spin to the magnetic potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009014.png" /> can be neglected, the massless Klein–Gordon equation also can be used for the description of massless spin-carrying particles, such as e.g. photons. In the case without outer fields the massless Klein–Gordon equation becomes equivalent to the [[Wave equation|wave equation]] with wave speed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009015.png" /> and is independent of the magnitude of Planck's constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009016.png" />. This explains, why the wave nature of massless particles, such as e.g. photons ( "light" ), can also be observed on a macroscopic scale — in contrast with the wave nature of massive particles (cf.also [[Massless field|Massless field]]; [[Massive field|Massive field]]).
+
If the outer field is zero, $( \phi , \mathbf{A} ) = 0$, or the coupling of the spin to the magnetic potential $\mathbf{A}$ can be neglected, the massless Klein–Gordon equation also can be used for the description of massless spin-carrying particles, such as e.g. photons. In the case without outer fields the massless Klein–Gordon equation becomes equivalent to the [[Wave equation|wave equation]] with wave speed $c$ and is independent of the magnitude of Planck's constant $h$. This explains, why the wave nature of massless particles, such as e.g. photons ( "light" ), can also be observed on a macroscopic scale — in contrast with the wave nature of massive particles (cf.also [[Massless field|Massless field]]; [[Massive field|Massive field]]).
  
The interpretation of the wave function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009017.png" /> as a quantum mechanical  "probability amplitude"  (similarly as in the case of the [[Schrödinger equation|Schrödinger equation]]), however, is not consistent, since the quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009018.png" /> in general depends on the time parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009019.png" />. Furthermore, the existence of negative frequency solutions is in contrast with the required lower boundedness of the energy ( "stability of matter" ). These problems are resolved through a re-interpretation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130090/m13009020.png" /> as a quantum field (cf. [[Quantum field theory|Quantum field theory]]), see e.g. [[#References|[a6]]], [[#References|[a7]]].
+
The interpretation of the wave function $\psi$ as a quantum mechanical  "probability amplitude"  (similarly as in the case of the [[Schrödinger equation|Schrödinger equation]]), however, is not consistent, since the quantity $\int _ { \mathbf{R} ^ { 3 } } | \psi ( t ,  \mathbf{x} ) | ^ { 2 } d  \mathbf{x}$ in general depends on the time parameter $t$. Furthermore, the existence of negative frequency solutions is in contrast with the required lower boundedness of the energy ( "stability of matter" ). These problems are resolved through a re-interpretation of $\psi ( t , \mathbf{x} )$ as a quantum field (cf. [[Quantum field theory|Quantum field theory]]), see e.g. [[#References|[a6]]], [[#References|[a7]]].
  
 
In recent time (as of 2000) solutions of the Klein–Gordon equation on Lorentzian manifolds have attracted increasing attention in connection with the theory of quantized fields on curved space-time, cf. e.g. [[#References|[a8]]].
 
In recent time (as of 2000) solutions of the Klein–Gordon equation on Lorentzian manifolds have attracted increasing attention in connection with the theory of quantized fields on curved space-time, cf. e.g. [[#References|[a8]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Klein,  "Quantentheorie und fünfdimensionale Relativitätstheorie"  ''Z. f. Phys.'' , '''37'''  (1926)  pp. 895</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  O. Gordon,  "Der Comptoneffekt nach der Schrödingerschen Theorie"  ''Z. f. Phys.'' , '''40'''  (1926)  pp. 117</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Schrödinger,  "Quantisierung als Eigenwertproblem IV"  ''Ann. Phys.'' , '''81'''  (1926)  pp. 109</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  L. Gross,  "Norm invariance of mass zero equations under the conformal group"  ''J. Math. Phys.'' , '''5'''  (1964)  pp. 687–695</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  E.M. de Jager,  "The Lorentz-invariant solutions of the Klein–Gordon equation I-II"  ''Indag. Math.'' , '''25'''  (1963)  pp. 515–531; 546–558</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  R. Jost,  "The general theory of quantised fields" , Amer. Math. Soc.  (1965)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  S. Weinberg,  "The quantum theory of fields" , '''I''' , Cambridge Univ. Press  (1995)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  S.A. Fulling,  "Aspects of quantum field theory in curved space-time" , Cambridge Univ. Press  (1989)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  O. Klein,  "Quantentheorie und fünfdimensionale Relativitätstheorie"  ''Z. f. Phys.'' , '''37'''  (1926)  pp. 895</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  O. Gordon,  "Der Comptoneffekt nach der Schrödingerschen Theorie"  ''Z. f. Phys.'' , '''40'''  (1926)  pp. 117</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  E. Schrödinger,  "Quantisierung als Eigenwertproblem IV"  ''Ann. Phys.'' , '''81'''  (1926)  pp. 109</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  L. Gross,  "Norm invariance of mass zero equations under the conformal group"  ''J. Math. Phys.'' , '''5'''  (1964)  pp. 687–695</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  E.M. de Jager,  "The Lorentz-invariant solutions of the Klein–Gordon equation I-II"  ''Indag. Math.'' , '''25'''  (1963)  pp. 515–531; 546–558</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  R. Jost,  "The general theory of quantised fields" , Amer. Math. Soc.  (1965)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  S. Weinberg,  "The quantum theory of fields" , '''I''' , Cambridge Univ. Press  (1995)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  S.A. Fulling,  "Aspects of quantum field theory in curved space-time" , Cambridge Univ. Press  (1989)</td></tr></table>

Revision as of 16:55, 1 July 2020

The Klein–Gordon equation [a1], [a2], [a3]

\begin{equation*} 0 = \left[ - \left( \frac { \partial } { \partial t } - i \frac { q e } { \hbar } \phi \right) ^ { 2 } + \right. \end{equation*}

\begin{equation*} \left.+ c ^ { 2 } \left( \nabla - i \frac { q e } { \hbar c } A \right) ^ { 2 } + \frac { c ^ { 4 } m ^ { 2 } } { \hbar ^ { 2 } } \right] \psi ( t , \mathbf{x} ) \end{equation*}

for the case where the mass parameter $m$ is equal to zero. The constant $c$ stands for the speed of light, $e$ is the charge of the positron, $\hbar = h / 2 \pi$ where $h$ is the Planck constant, $( t , \mathbf{x} )$ are the time, respectively space, variables, and $i$ is the imaginary unit. The (complex-valued) solution $\psi$ describes the wave function of a relativistic spinless and massless particle with charge in the exterior electro-magnetic field $( \phi , \mathbf{A} )$. It is a second-order, hyperbolic partial differential equation. Solutions are being studied in, e.g., [a4], [a5].

If the outer field is zero, $( \phi , \mathbf{A} ) = 0$, or the coupling of the spin to the magnetic potential $\mathbf{A}$ can be neglected, the massless Klein–Gordon equation also can be used for the description of massless spin-carrying particles, such as e.g. photons. In the case without outer fields the massless Klein–Gordon equation becomes equivalent to the wave equation with wave speed $c$ and is independent of the magnitude of Planck's constant $h$. This explains, why the wave nature of massless particles, such as e.g. photons ( "light" ), can also be observed on a macroscopic scale — in contrast with the wave nature of massive particles (cf.also Massless field; Massive field).

The interpretation of the wave function $\psi$ as a quantum mechanical "probability amplitude" (similarly as in the case of the Schrödinger equation), however, is not consistent, since the quantity $\int _ { \mathbf{R} ^ { 3 } } | \psi ( t , \mathbf{x} ) | ^ { 2 } d \mathbf{x}$ in general depends on the time parameter $t$. Furthermore, the existence of negative frequency solutions is in contrast with the required lower boundedness of the energy ( "stability of matter" ). These problems are resolved through a re-interpretation of $\psi ( t , \mathbf{x} )$ as a quantum field (cf. Quantum field theory), see e.g. [a6], [a7].

In recent time (as of 2000) solutions of the Klein–Gordon equation on Lorentzian manifolds have attracted increasing attention in connection with the theory of quantized fields on curved space-time, cf. e.g. [a8].

References

[a1] O. Klein, "Quantentheorie und fünfdimensionale Relativitätstheorie" Z. f. Phys. , 37 (1926) pp. 895
[a2] O. Gordon, "Der Comptoneffekt nach der Schrödingerschen Theorie" Z. f. Phys. , 40 (1926) pp. 117
[a3] E. Schrödinger, "Quantisierung als Eigenwertproblem IV" Ann. Phys. , 81 (1926) pp. 109
[a4] L. Gross, "Norm invariance of mass zero equations under the conformal group" J. Math. Phys. , 5 (1964) pp. 687–695
[a5] E.M. de Jager, "The Lorentz-invariant solutions of the Klein–Gordon equation I-II" Indag. Math. , 25 (1963) pp. 515–531; 546–558
[a6] R. Jost, "The general theory of quantised fields" , Amer. Math. Soc. (1965)
[a7] S. Weinberg, "The quantum theory of fields" , I , Cambridge Univ. Press (1995)
[a8] S.A. Fulling, "Aspects of quantum field theory in curved space-time" , Cambridge Univ. Press (1989)
How to Cite This Entry:
Massless Klein-Gordon equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Massless_Klein-Gordon_equation&oldid=22795
This article was adapted from an original article by S. AlbeverioH. Gottschalk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article