Difference between revisions of "Catalan constant"
m (link) |
m (AUTOMATIC EDIT (latexlist): Replaced 32 formulas out of 32 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 32 formulas, 32 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | Named after its inventor, E.Ch. Catalan (1814–1894), the Catalan constant $G$ (which is denoted also by $\lambda$) is defined by | ||
− | + | \begin{equation} \tag{a1} G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong \end{equation} | |
− | + | \begin{equation*} \cong 0.915965594177219015 \ldots . \end{equation*} | |
+ | |||
+ | If, in terms of the Digamma (or Psi) function $\psi ( z )$, defined by | ||
+ | |||
+ | \begin{equation} \tag{a2} \psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) } \end{equation} | ||
or | or | ||
− | + | \begin{equation*} \operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t, \end{equation*} | |
one puts | one puts | ||
− | + | \begin{equation} \tag{a3} \beta ( z ) : = \frac { 1 } { 2 } \left[ \psi \left( \frac { 1 } { 2 } z + \frac { 1 } { 2 } \right) - \psi \left( \frac { 1 } { 2 } z \right) \right] = \end{equation} | |
− | + | \begin{equation*} = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k }, \end{equation*} | |
where | where | ||
− | + | \begin{equation*} z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}, \end{equation*} | |
then | then | ||
− | + | \begin{equation} \tag{a4} G = - \frac { 1 } { 4 } \beta ^ { \prime } \left( \frac { 1 } { 2 } \right) \end{equation} | |
− | which provides a relationship between the Catalan constant | + | which provides a relationship between the Catalan constant $G$ and the Digamma function $\psi ( z )$. |
− | The Catalan constant | + | The Catalan constant $G$ is related also to other functions, such as the Clausen function $\operatorname{Cl} _ { 2 } ( z )$, defined by |
− | + | \begin{equation} \tag{a5} \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t = \end{equation} | |
− | + | \begin{equation*} = \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } }, \end{equation*} | |
− | and the [[Hurwitz zeta function]] | + | and the [[Hurwitz zeta function]] $\zeta ( s , a )$, which is defined, when $\operatorname { Re } s > 1$, by |
− | + | \begin{equation} \tag{a6} \zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }, \end{equation} | |
− | + | \begin{equation*} \operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }. \end{equation*} | |
Thus, | Thus, | ||
− | + | \begin{equation} \tag{a7} G = \operatorname{Cl} _ { 2 } ( \frac { 1 } { 2 } \pi ) = - \operatorname{Cl} _ { 2 } \left( \frac { 3 } { 2 } \pi \right) = \end{equation} | |
− | + | \begin{equation*} = \frac { 1 } { 16 } \left[ \zeta \left( 2 , \frac { 1 } { 4 } \right) - \zeta \left( 2 , \frac { 3 } { 4 } \right) \right]. \end{equation*} | |
Since | Since | ||
− | + | \begin{equation} \tag{a8} \psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ), \end{equation} | |
− | + | \begin{equation*} n \in \mathbf{N} : = \{ 1,2 , \ldots \} , z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 } ^ { - }, \end{equation*} | |
the last expression in (a7) would follow also from (a4) in light of the definition in (a3). | the last expression in (a7) would follow also from (a4) in light of the definition in (a3). | ||
− | A fairly large number of integrals and series can be evaluated in terms of the Catalan constant | + | A fairly large number of integrals and series can be evaluated in terms of the Catalan constant $G$. For example, |
− | + | \begin{equation} \tag{a9} \int _ { 0 } ^ { 1 } \frac { t\operatorname { log } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t = \end{equation} | |
− | + | \begin{equation*} = \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 }, \end{equation*} | |
− | + | \begin{equation} \tag{a10} \sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } = \end{equation} | |
− | + | \begin{equation*} = 4 \operatorname { log } 2 + 2 - \frac { 4 } { \pi } ( 2 G + 1 ), \end{equation*} | |
and | and | ||
− | + | \begin{equation} \tag{a11} \sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }, \end{equation} | |
− | where | + | where $\zeta ( s ) = \zeta ( s , 1 )$ denotes the familiar [[Riemann zeta-function|Riemann zeta-function]]. |
====References==== | ====References==== |
Revision as of 16:52, 1 July 2020
Named after its inventor, E.Ch. Catalan (1814–1894), the Catalan constant $G$ (which is denoted also by $\lambda$) is defined by
\begin{equation} \tag{a1} G : = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { ( 2 k + 1 ) ^ { 2 } } \cong \end{equation}
\begin{equation*} \cong 0.915965594177219015 \ldots . \end{equation*}
If, in terms of the Digamma (or Psi) function $\psi ( z )$, defined by
\begin{equation} \tag{a2} \psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) } \end{equation}
or
\begin{equation*} \operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t, \end{equation*}
one puts
\begin{equation} \tag{a3} \beta ( z ) : = \frac { 1 } { 2 } \left[ \psi \left( \frac { 1 } { 2 } z + \frac { 1 } { 2 } \right) - \psi \left( \frac { 1 } { 2 } z \right) \right] = \end{equation}
\begin{equation*} = \sum _ { k = 0 } ^ { \infty } \frac { ( - 1 ) ^ { k } } { z + k }, \end{equation*}
where
\begin{equation*} z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \}, \end{equation*}
then
\begin{equation} \tag{a4} G = - \frac { 1 } { 4 } \beta ^ { \prime } \left( \frac { 1 } { 2 } \right) \end{equation}
which provides a relationship between the Catalan constant $G$ and the Digamma function $\psi ( z )$.
The Catalan constant $G$ is related also to other functions, such as the Clausen function $\operatorname{Cl} _ { 2 } ( z )$, defined by
\begin{equation} \tag{a5} \operatorname {Cl} _ { 2 } ( z ) : = - \int _ { 0 } ^ { z } \operatorname { log } \left| 2 \operatorname { sin } \left( \frac { 1 } { 2 } t \right) \right| d t = \end{equation}
\begin{equation*} = \sum _ { k = 1 } ^ { \infty } \frac { \operatorname { sin } ( k z ) } { k ^ { 2 } }, \end{equation*}
and the Hurwitz zeta function $\zeta ( s , a )$, which is defined, when $\operatorname { Re } s > 1$, by
\begin{equation} \tag{a6} \zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } }, \end{equation}
\begin{equation*} \operatorname { Re } s > 1 , a \in \mathbf{C} \backslash \mathbf{Z} ^{ - } _ { 0 }. \end{equation*}
Thus,
\begin{equation} \tag{a7} G = \operatorname{Cl} _ { 2 } ( \frac { 1 } { 2 } \pi ) = - \operatorname{Cl} _ { 2 } \left( \frac { 3 } { 2 } \pi \right) = \end{equation}
\begin{equation*} = \frac { 1 } { 16 } \left[ \zeta \left( 2 , \frac { 1 } { 4 } \right) - \zeta \left( 2 , \frac { 3 } { 4 } \right) \right]. \end{equation*}
Since
\begin{equation} \tag{a8} \psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ), \end{equation}
\begin{equation*} n \in \mathbf{N} : = \{ 1,2 , \ldots \} , z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 } ^ { - }, \end{equation*}
the last expression in (a7) would follow also from (a4) in light of the definition in (a3).
A fairly large number of integrals and series can be evaluated in terms of the Catalan constant $G$. For example,
\begin{equation} \tag{a9} \int _ { 0 } ^ { 1 } \frac { t\operatorname { log } ( t ^ { - 1 } \pm t ) } { 1 + t ^ { 4 } } d t = \end{equation}
\begin{equation*} = \int _ { 1 } ^ { \infty } \frac { t \operatorname { log } ( t \pm t ^ { - 1 } ) } { 1 + t ^ { 4 } } d t = \frac { \pi } { 16 } \operatorname { log } 2 \pm \frac { G } { 4 }, \end{equation*}
\begin{equation} \tag{a10} \sum _ { k = 1 } ^ { \infty } \left( \frac { ( 2 k + 1 ) ! } { k ! ( k + 1 ) ! } \right) ^ { 2 } \frac { 2 ^ { - 4 k } } { k } = \end{equation}
\begin{equation*} = 4 \operatorname { log } 2 + 2 - \frac { 4 } { \pi } ( 2 G + 1 ), \end{equation*}
and
\begin{equation} \tag{a11} \sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }, \end{equation}
where $\zeta ( s ) = \zeta ( s , 1 )$ denotes the familiar Riemann zeta-function.
References
[Fi] | Steven R. Finch, "Mathematical constants" , Encyclopedia of mathematics and its applications 94, Cambridge University Press (2003) ISBN 0-521-81805-2 Zbl 1054.00001 |
Catalan constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Catalan_constant&oldid=38979