Namespaces
Variants
Actions

Difference between revisions of "Nuclear-C*-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (AUTOMATIC EDIT (latexlist): Replaced 2 formulas out of 2 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
<!--
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
n0678302.png
+
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
$#A+1 = 52 n = 2
+
was used.
$#C+1 = 52 : ~/encyclopedia/old_files/data/N067/N.0607830 Nuclear \BMI C sup \ast\EMI\AAhalgebra
+
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
 +
Out of 2 formulas, 2 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
Line 72: Line 71:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.C. Lance,  "Tensor products and nuclear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783056.png" />-algebras"  R.V. Kadison (ed.) , ''Operator algebras and applications'' , ''Proc. Symp. Pure Math.'' , '''38''' , Amer. Math. Soc.  (1982)  pp. 379–399</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Bratteli,  D.W. Robinson,  "Operator algebras and quantum statistical mechanics" , '''1''' , Springer  (1979)</TD></TR></table>
+
<table><tr><td valign="top">[1]</td> <td valign="top">  E.C. Lance,  "Tensor products and nuclear $C ^ { * }$-algebras"  R.V. Kadison (ed.) , ''Operator algebras and applications'' , ''Proc. Symp. Pure Math.'' , '''38''' , Amer. Math. Soc.  (1982)  pp. 379–399</td></tr><tr><td valign="top">[2]</td> <td valign="top">  O. Bratteli,  D.W. Robinson,  "Operator algebras and quantum statistical mechanics" , '''1''' , Springer  (1979)</td></tr></table>
  
 
====Comments====
 
====Comments====
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.V. Kadison,  J.R. Ringrose,  "Fundamentals of the theory of operator algebras" , '''1–2''' , Acad. Press  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.K. Pedersen,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067830/n06783057.png" />-algebras and their automorphism groups" , Acad. Press  (1979)  pp. Sect. 8.15.15</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  R.V. Kadison,  J.R. Ringrose,  "Fundamentals of the theory of operator algebras" , '''1–2''' , Acad. Press  (1983)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  G.K. Pedersen,  "$C ^ { * }$-algebras and their automorphism groups" , Acad. Press  (1979)  pp. Sect. 8.15.15</td></tr></table>

Latest revision as of 15:30, 1 July 2020


A $ C ^ {*} $- algebra $ A $ with the following property: For any $ C ^ {*} $- algebra $ B $ there is on the algebraic tensor product $ A \otimes B $ a unique norm such that the completion of $ A \otimes B $ with respect to this norm is a $ C ^ {*} $- algebra. Thus, relative to tensor products, nuclear $ C ^ {*} $- algebras behave similarly to nuclear spaces (cf. Nuclear space) (although infinite-dimensional nuclear $ C ^ {*} $- algebras are not nuclear spaces). The class of nuclear $ C ^ {*} $- algebras includes all type I $ C ^ {*} $- algebras. This class is closed with respect to the inductive limit. If $ I $ is a closed two-sided ideal in a $ C ^ {*} $- algebra $ A $, then $ A $ is nuclear if and only if $ I $ and $ A/I $ are. A subalgebra of a nuclear $ C ^ {*} $- algebra need not be a nuclear $ C ^ {*} $- algebra. The tensor product of two $ C ^ {*} $- algebras $ A $ and $ B $ is nuclear if and only if $ A $ and $ B $( both) are nuclear. If $ G $ is an amenable locally compact group, then the enveloping $ C ^ {*} $- algebra of the group algebra $ L _ {1} ( G) $ is nuclear (the converse is not true). Each factor representation of a nuclear $ C ^ {*} $- algebra is hyperfinite, that is, the von Neumann algebra generated by this representation can be obtained from an increasing sequence of finite-dimensional factors (matrix algebras). Any factor state on a nuclear $ C ^ {*} $- subalgebra of a $ C ^ {*} $- algebra can be extended to a factor state on the whole algebra.

Let $ L ( H) $ be the $ C ^ {*} $- algebra of all bounded linear operators on a Hilbert space $ H $, and let $ A $ be a $ C ^ {*} $- algebra of operators on $ H $. If $ A $ is nuclear, then its weak closure $ \overline{A}\; $ is an injective von Neumann algebra, that is, there is a projection $ L ( H) \rightarrow \overline{A}\; $ with norm one; in this case the commutant $ A ^ \prime $ of $ A $ is also injective. An arbitrary $ C ^ {*} $- algebra $ A $ is nuclear if and only if its enveloping von Neumann algebra is injective.

A $ C ^ {*} $- algebra $ A $ is nuclear if and only if it has the completely positive approximation property, i.e. the identity operator in $ A $ can be approximated in the strong operator topology by linear operators of finite rank with norm not exceeding 1, and with the additional property of "complete positivity" [1].

Every nuclear $ C ^ {*} $- algebra has the approximation and bounded approximation properties (see Nuclear operator). There is, however, a non-nuclear $ C ^ {*} $- algebra with the bounded approximation property. The $ C ^ {*} $- algebra $ L ( H) $ of all bounded operators on an infinite-dimensional Hilbert space $ H $ does not have the completely positive approximation property, or even the approximation property, so that $ L ( H) $ is not nuclear.

References

[1] E.C. Lance, "Tensor products and nuclear $C ^ { * }$-algebras" R.V. Kadison (ed.) , Operator algebras and applications , Proc. Symp. Pure Math. , 38 , Amer. Math. Soc. (1982) pp. 379–399
[2] O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , 1 , Springer (1979)

Comments

References

[a1] R.V. Kadison, J.R. Ringrose, "Fundamentals of the theory of operator algebras" , 1–2 , Acad. Press (1983)
[a2] G.K. Pedersen, "$C ^ { * }$-algebras and their automorphism groups" , Acad. Press (1979) pp. Sect. 8.15.15
How to Cite This Entry:
Nuclear-C*-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nuclear-C*-algebra&oldid=48023
This article was adapted from an original article by G.L. Litvinov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article