Difference between revisions of "Schur theorems"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Typos, tex done) |
||
Line 12: | Line 12: | ||
Theorems for finding a solution to the [[Coefficient problem|coefficient problem]] for bounded analytic functions. They were obtained by I. Schur [[#References|[1]]]. Let $ B $ | Theorems for finding a solution to the [[Coefficient problem|coefficient problem]] for bounded analytic functions. They were obtained by I. Schur [[#References|[1]]]. Let $ B $ | ||
− | be the class of regular functions $ f( z) = c _ {0} + c _ {1} z + \dots $ | + | be the class of regular functions $ f{ ( z) } = c _ { 0 } {+c} _ { 1 } {z+\dots} $ |
in $ | z | < 1 $ | in $ | z | < 1 $ | ||
− | satisfying in it the condition $ | f( z ) | \leq 1 $. | + | satisfying in it the condition $ | f{ ( z ) } | \leq 1 $. |
− | Let $ \mathbf C | + | Let $ \mathbf C ^ { n } $, |
$ n \geq 1 $, | $ n \geq 1 $, | ||
be the $ n $- | be the $ n $- | ||
dimensional complex Euclidean space, its points are $ n $- | dimensional complex Euclidean space, its points are $ n $- | ||
− | tuples of complex numbers $ ( c _ {0} \dots c _ {n-} | + | tuples of complex numbers $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $; |
− | let $ B | + | let $ B ^ { { ( n) } } $ |
− | be a set of points $ ( c _ {0} \dots c _ {n-} | + | be a set of points $ { ( c _ { 0 } \dots c _ { {n-1} } ) } \in \mathbf C ^ { n } $ |
− | such that the numbers $ c _ {0} \dots c _ {n-} | + | such that the numbers $ c _ { 0 } \dots c _ { {n-1} } $ |
are the first $ n $ | are the first $ n $ | ||
coefficients of some function from $ B $. | coefficients of some function from $ B $. | ||
− | The sets $ B | + | The sets $ B ^ { { ( n) } } $ |
− | are closed, bounded and convex in $ \mathbf C | + | are closed, bounded and convex in $ \mathbf C ^ { n } $. |
Then the following theorems hold. | Then the following theorems hold. | ||
− | Schur's first theorem: To the points $ ( c _ {0} \dots c _ {n-} | + | Schur's first theorem: To the points $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $ |
− | on the boundary of $ B | + | on the boundary of $ B ^ { { ( n) } } $ |
there correspond in $ B $ | there correspond in $ B $ | ||
only rational functions of the form | only rational functions of the form | ||
− | $$ | + | $$ \frac{ \overline{\alpha _ { {n-1} } } + \overline{\alpha _ { {n-2} } } {z+\dots} + \overline{\alpha _ { 0 } } z ^ { {n-1} } }{ \alpha _ { 0 } {+\alpha} _ { 1 } {z+\dots} {+\alpha} _ { {n-1} } z ^ { {n-1} } } . $$ |
− | + | Schur's second theorem: A necessary and sufficient condition for $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $ | |
− | + | to be an interior point of $ B ^ { { ( n) } } $ | |
− | |||
− | |||
− | Schur's second theorem: A necessary and sufficient condition for $ ( c _ {0} \dots c _ {n-} | ||
− | to be an interior point of $ B | ||
is that the following inequalities hold for $ k = 1 \dots n $: | is that the following inequalities hold for $ k = 1 \dots n $: | ||
− | $$ | + | $$ \left | \begin{array}{llllllll} 1 & 0 &\cdot & 0 &c _ { 0 } &c _ { 1 } &\cdot &c _ { {k-1} } \\ 0 & 1 &\cdot & 0 & 0 &c _ { 0 } &\cdot &c _ { {k-2} } \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ 0 & 0 &\cdot & 1 & 0 & 0 &\cdot &c _ { 0 } \\ \overline{c _ { 0 } } & 0 &\cdot & 0 & 1 & 0 &\cdot & 0 \\ \overline{c _ { 1 } } &\overline{c _ { 0 } } &\cdot & 0 & 0 & 1 &\cdot & 0 \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ \overline{c _ { {k-1} } } &\overline{c _ { {k-2} } } &\cdot &\overline{c _ { 0 } } & 0 & 0 &\cdot & 1 \\ \end{array} \right | > 0. $$ |
− | \left | | ||
− | |||
− | \begin{array}{llllllll} | ||
− | 1 & 0 &\cdot & 0 &c _ {0} | ||
− | 0 & 1 &\cdot & 0 & 0 &c _ {0} | ||
− | \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ | ||
− | 0 & 0 &\cdot & 1 & 0 & 0 &\cdot &c _ {0} | ||
− | \overline | ||
− | \overline | ||
− | \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ | ||
− | \overline | ||
− | \end{array} | ||
− | |||
− | \right | > 0. | ||
− | $$ | ||
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. | Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region. |
Revision as of 18:04, 10 June 2020
Theorems for finding a solution to the coefficient problem for bounded analytic functions. They were obtained by I. Schur [1]. Let $ B $
be the class of regular functions $ f{ ( z) } = c _ { 0 } {+c} _ { 1 } {z+\dots} $
in $ | z | < 1 $
satisfying in it the condition $ | f{ ( z ) } | \leq 1 $.
Let $ \mathbf C ^ { n } $,
$ n \geq 1 $,
be the $ n $-
dimensional complex Euclidean space, its points are $ n $-
tuples of complex numbers $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $;
let $ B ^ { { ( n) } } $
be a set of points $ { ( c _ { 0 } \dots c _ { {n-1} } ) } \in \mathbf C ^ { n } $
such that the numbers $ c _ { 0 } \dots c _ { {n-1} } $
are the first $ n $
coefficients of some function from $ B $.
The sets $ B ^ { { ( n) } } $
are closed, bounded and convex in $ \mathbf C ^ { n } $.
Then the following theorems hold.
Schur's first theorem: To the points $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $ on the boundary of $ B ^ { { ( n) } } $ there correspond in $ B $ only rational functions of the form
$$ \frac{ \overline{\alpha _ { {n-1} } } + \overline{\alpha _ { {n-2} } } {z+\dots} + \overline{\alpha _ { 0 } } z ^ { {n-1} } }{ \alpha _ { 0 } {+\alpha} _ { 1 } {z+\dots} {+\alpha} _ { {n-1} } z ^ { {n-1} } } . $$
Schur's second theorem: A necessary and sufficient condition for $ { ( c _ { 0 } \dots c _ { {n-1} } ) } $ to be an interior point of $ B ^ { { ( n) } } $ is that the following inequalities hold for $ k = 1 \dots n $:
$$ \left | \begin{array}{llllllll} 1 & 0 &\cdot & 0 &c _ { 0 } &c _ { 1 } &\cdot &c _ { {k-1} } \\ 0 & 1 &\cdot & 0 & 0 &c _ { 0 } &\cdot &c _ { {k-2} } \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ 0 & 0 &\cdot & 1 & 0 & 0 &\cdot &c _ { 0 } \\ \overline{c _ { 0 } } & 0 &\cdot & 0 & 1 & 0 &\cdot & 0 \\ \overline{c _ { 1 } } &\overline{c _ { 0 } } &\cdot & 0 & 0 & 1 &\cdot & 0 \\ \cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot &\cdot \\ \overline{c _ { {k-1} } } &\overline{c _ { {k-2} } } &\cdot &\overline{c _ { 0 } } & 0 & 0 &\cdot & 1 \\ \end{array} \right | > 0. $$
Schur's second theorem provides the complete solution to the coefficient problem for bounded functions in the case of interior points of the coefficients region.
References
[1] | I. Schur, "Ueber Potentzreihen, die im Innern des Einheitkreises berchränkt sind" J. Reine Angew. Math. , 147 (1917) pp. 205–232 |
[2] | L. Bieberbach, "Lehrbuch der Funktionentheorie" , 2 , Teubner (1931) |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
[a2] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) pp. 40 |
Schur theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_theorems&oldid=49576