Difference between revisions of "Topology of manifolds"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | t0932301.png | ||
+ | $#A+1 = 123 n = 0 | ||
+ | $#C+1 = 123 : ~/encyclopedia/old_files/data/T093/T.0903230 Topology of manifolds | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The branch of the theory of manifolds (cf. [[Manifold|Manifold]]) concerned with the study of relations between different types of manifolds. | The branch of the theory of manifolds (cf. [[Manifold|Manifold]]) concerned with the study of relations between different types of manifolds. | ||
The most important types of finite-dimensional manifolds and relations between them are illustrated in (1). | The most important types of finite-dimensional manifolds and relations between them are illustrated in (1). | ||
− | + | $$ \tag{1 } | |
− | + | \begin{array}{ccc} | |
+ | \mathop{\rm P} &{} & \mathop{\rm P} ( \mathop{\rm ANR} ) \\ | ||
+ | \uparrow &{} &\uparrow \\ | ||
+ | \mathop{\rm H} &{} & \mathop{\rm H} ( \mathop{\rm ANR} ) \\ | ||
+ | {} &{} \mathop{\rm TOP} &{} \\ | ||
+ | \mathop{\rm TRI} &\uparrow & \mathop{\rm Lip} \\ | ||
+ | {} & \mathop{\rm Handle} &{} \\ | ||
+ | {} &\uparrow &{} \\ | ||
+ | {} & \mathop{\rm PL} &{} \\ | ||
+ | {} &\uparrow &{} \\ | ||
+ | {} & \mathop{\rm Diff} &{} \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
− | + | Here $ \mathop{\rm Diff} $ | |
+ | is the category of differentiable (smooth) manifolds; $ \mathop{\rm PL} $ | ||
+ | is the category of piecewise-linear (combinatorial) manifolds; $ \mathop{\rm TRI} $ | ||
+ | is the category of topological manifolds that are polyhedra; $ \mathop{\rm Handle} $ | ||
+ | is the category of topological manifolds admitting a topological decomposition into handles; $ \mathop{\rm Lip} $ | ||
+ | is the category of Lipschitz manifolds (with Lipschitz transition mappings between local charts); $ \mathop{\rm TOP} $ | ||
+ | is the category of topological manifolds (Hausdorff and with a countable base); $ \mathop{\rm H} $ | ||
+ | is the category of polyhedral homology manifolds without boundary (polyhedra, the boundary of the star of each vertex of which has the homology of the sphere of corresponding dimension); $ \mathop{\rm H} ( \mathop{\rm ANR} ) $ | ||
+ | is the category of generalized manifolds (finite-dimensional absolute neighbourhood retracts $ X $ | ||
+ | that are homology manifolds without boundary, i.e. with the property that for any point $ x \in X $ | ||
+ | the group $ H ^ {*} ( X, X \setminus x; \mathbf Z ) $ | ||
+ | is isomorphic to the group $ H ^ {*} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0; \mathbf Z ) $); | ||
+ | $ \mathop{\rm P} ( \mathop{\rm ANR} ) $ | ||
+ | is the category of Poincaré spaces (finite-dimensional absolute neighbourhood retracts $ X $ | ||
+ | for which there exists a number $ n $ | ||
+ | and an element $ \mu \in H _ {n} ( X) $ | ||
+ | such that $ H _ {r} ( X, \mathbf Z ) = 0 $ | ||
+ | when $ r \geq n + 1 $, | ||
+ | and the mapping $ \mu \cap : H ^ {r} ( X) \rightarrow H _ {n - r } ( X) $ | ||
+ | is an isomorphism for all $ r $); | ||
+ | and $ \mathop{\rm P} $ | ||
+ | is the category of Poincaré polyhedra (the subcategory of the preceding category consisting of polyhedra). | ||
− | The arrow < | + | The arrows of (1), apart from the 3 lower ones and the arrows $ \mathop{\rm H} \rightarrow \mathop{\rm TOP} \rightarrow \mathop{\rm P} $, |
+ | denote functors with the structure of forgetting functors. The arrow $ \mathop{\rm Diff} \rightarrow \mathop{\rm PL} $ | ||
+ | expresses Whitehead's theorem on the triangulability of smooth manifolds. In dimensions $ < 8 $ | ||
+ | this arrow is reversible (an arbitrary $ \mathop{\rm PL} $- | ||
+ | manifold is smoothable) but in dimensions $ \geq 8 $ | ||
+ | there are non-smoothable $ \mathop{\rm PL} $- | ||
+ | manifolds and even $ \mathop{\rm PL} $- | ||
+ | manifolds that are homotopy inequivalent to any smooth manifold. The imbedding $ \mathop{\rm PL} \subset \mathop{\rm TRI} $ | ||
+ | is also irreversible in the same strong sense (there exist polyhedral manifolds of dimension $ \geq 5 $ | ||
+ | that are homotopy inequivalent to any $ \mathop{\rm PL} $- | ||
+ | manifold). Here already for the sphere $ S ^ {n} $, | ||
+ | $ n \geq 5 $, | ||
+ | there exist triangulations in which it is not a $ \mathop{\rm PL} $- | ||
+ | manifold. | ||
− | The arrow | + | The arrow $ \mathop{\rm PL} \rightarrow \mathop{\rm Handle} $ |
+ | expresses the fact that every $ \mathop{\rm PL} $- | ||
+ | manifold has a handle decomposition. | ||
− | The arrow | + | The arrow $ \mathop{\rm PL} \rightarrow \mathop{\rm Lip} $ |
+ | expresses the theorem on the existence of a Lipschitz structure on an arbitrary $ \mathop{\rm PL} $- | ||
+ | manifold. | ||
− | + | The arrow $ \mathop{\rm Handle} \rightarrow \mathop{\rm TOP} $ | |
+ | is reversible if $ n \neq 4 $ | ||
+ | and irreversible if $ n = 4 $( | ||
+ | an arbitrary topological manifold of dimension $ n \neq 4 $ | ||
+ | admits a handle decomposition and there exist four-dimensional topological manifolds for which this is not true). | ||
− | + | Similarly, if $ n \neq 4 $ | |
+ | the arrow $ \mathop{\rm Lip} \rightarrow \mathop{\rm TOP} $ | ||
+ | is reversible (and moreover in a unique way). | ||
− | The arrow | + | The question on the reversibility of the arrow $ \mathop{\rm TRI} \rightarrow \mathop{\rm TOP} $ |
+ | gives the classical unsolved problem on the triangulability of arbitrary topological manifolds. | ||
− | The arrow | + | The arrow $ \mathop{\rm H} \rightarrow \mathop{\rm P} $ |
+ | is irreversible in the strong sense (there exist Poincaré polyhedra that are homotopy inequivalent to any homology manifold). | ||
− | The arrow | + | The arrow $ \mathop{\rm H} \rightarrow \mathop{\rm TOP} $ |
+ | expresses a theorem on the homotopy equivalence of an arbitrary homology manifold of dimension $ n \geq 5 $ | ||
+ | to a topological manifold. | ||
− | The | + | The arrow $ \mathop{\rm TOP} \rightarrow \mathop{\rm P} $ |
+ | expresses the theorem on the homotopy equivalence of an arbitrary topological manifold to a polyhedron. | ||
− | The similar question for the arrows | + | The imbedding $ \mathop{\rm TOP} \subset \mathop{\rm H} ( \mathop{\rm ANR} ) $ |
+ | expresses that an arbitrary topological manifold is an $ \mathop{\rm ANR} $. | ||
+ | |||
+ | The similar question for the arrows $ \mathop{\rm Diff} \rightarrow \mathop{\rm PL} \rightarrow \mathop{\rm TOP} \rightarrow \mathop{\rm P} $ | ||
+ | has been solved using the theory of stable bundles (respectively, vector, piecewise-linear, topological, and spherical bundles), i.e. by examining the homotopy classes of mappings of a manifold $ X $ | ||
+ | into the corresponding classifying spaces BO, BPL, BTOP, BG. | ||
There exist canonical composition mappings | There exist canonical composition mappings | ||
− | + | $$ \tag{2 } | |
+ | \mathop{\rm BO} \rightarrow \mathop{\rm BPL} \rightarrow \mathop{\rm BTOP} \rightarrow \mathop{\rm BG} , | ||
+ | $$ | ||
of which the homotopy fibres and the homotopy fibres of their compositions are denoted, respectively, by the symbols | of which the homotopy fibres and the homotopy fibres of their compositions are denoted, respectively, by the symbols | ||
− | + | $$ | |
+ | \mathop{\rm PL} / \mathop{\rm O} , \mathop{\rm TOP} / \mathop{\rm O} , \mathop{\rm G} / | ||
+ | \mathop{\rm O} , \mathop{\rm TOP} / \mathop{\rm PL} ,\ | ||
+ | \mathop{\rm G} / \mathop{\rm PL} , \mathop{\rm G} / \mathop{\rm TOP} . | ||
+ | $$ | ||
− | For every manifold | + | For every manifold $ X $ |
+ | from a category $ \mathop{\rm Diff} $, | ||
+ | $ \mathop{\rm PL} $, | ||
+ | $ \mathop{\rm TOP} $, | ||
+ | $ \mathop{\rm P} $ | ||
+ | there exists a normal stable bundle, i.e. a canonical mapping $ \tau _ {X} $ | ||
+ | from $ X $ | ||
+ | into the corresponding classifying space. | ||
− | In the transition from a "narrow" category of manifolds to a "wider" one, for example, from smooth to piecewise-linear, the mapping | + | In the transition from a "narrow" category of manifolds to a "wider" one, for example, from smooth to piecewise-linear, the mapping $ \tau _ {X} $ |
+ | is composed with the corresponding mappings (2). Hence, for example, for a PL-manifold $ X $ | ||
+ | there exists a smooth manifold PL-homeomorphic to it ( $ X $ | ||
+ | is said to be smoothable) only if the lifting problem (3), the homotopy obstruction to the solution of which lies in the groups $ H ^ {i + 1 } ( X, \pi _ {i} ( \mathop{\rm PL} / \mathop{\rm O} )) $, | ||
+ | is solvable: | ||
− | + | $$ \tag{3 } | |
− | + | \begin{array}{lcc} | |
+ | {} &{} & \mathop{\rm BO} \\ | ||
+ | {} &{} &\downarrow \\ | ||
+ | X & \mathop \rightarrow \limits _ { {\tau _ {X} }} & \mathop{\rm BPL} \\ | ||
+ | \end{array} | ||
− | + | $$ | |
− | + | Here it turns out that the solvability of (3) is not only necessary but also sufficient for the smoothability of a PL-manifold $ X $( | |
+ | and all non-equivalent smoothings are in bijective correspondence with the set $ [ X, \mathop{\rm PL} / \mathop{\rm O} ] $ | ||
+ | of homotopy classes of mappings $ X \rightarrow \mathop{\rm PL} / \mathop{\rm O} $). | ||
− | + | By replacing $ \mathop{\rm PL} / \mathop{\rm O} $ | |
+ | by $ \mathop{\rm TOP} / \mathop{\rm O} $, | ||
+ | the same holds for the smoothability of topological manifolds $ X $ | ||
+ | of dimension $ \geq 5 $, | ||
+ | and also (by replacing $ \mathop{\rm PL} / \mathop{\rm O} $ | ||
+ | by $ \mathop{\rm TOP} / \mathop{\rm O} $) | ||
+ | for their $ \mathop{\rm PL} $- | ||
+ | triangulations. The homotopy group $ \Gamma _ {k} = \pi _ {k} ( \mathop{\rm PL} / \mathop{\rm O} ) $ | ||
+ | is isomorphic to the group of classes of oriented diffeomorphic smooth manifolds obtained by glueing the boundaries of two $ k $- | ||
+ | dimensional spheres. This group is finite for all $ k $( | ||
+ | and is even trivial for $ k \leq 6 $). | ||
+ | Therefore, the number of non-equivalent smoothings of an arbitrary PL-manifold $ X $ | ||
+ | is finite and is bounded above by the number | ||
− | The group | + | $$ |
+ | \mathop{\rm ord} \sum _ { k } | ||
+ | H ^ {k} ( X, \pi _ {k} ( \mathop{\rm PL} / \mathop{\rm O} )). | ||
+ | $$ | ||
+ | |||
+ | The homotopy group $ \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm PL} ) $ | ||
+ | vanishes, with one exception: $ \pi _ {3} ( \mathop{\rm TOP} / \mathop{\rm PL} ) = \mathbf Z /2 $. | ||
+ | Thus, the existence of a $ \mathop{\rm PL} $- | ||
+ | triangulation of a topological manifold $ X $ | ||
+ | of dimension $ \geq 5 $ | ||
+ | is determined by the vanishing of a certain cohomology class $ \Delta ( X) \in H ^ {4} ( X, \mathbf Z /2) $, | ||
+ | while the set of non-equivalent $ \mathop{\rm PL} $- | ||
+ | triangulations of $ X $ | ||
+ | is in bijective correspondence with the group $ H ^ {3} ( X, \mathbf Z /2) $. | ||
+ | |||
+ | The group $ \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm O} ) $ | ||
+ | coincides with the group $ \Gamma _ {k} $ | ||
+ | if $ k \neq 3 $ | ||
+ | and differs from $ \Gamma _ {k} $ | ||
+ | for $ k = 3 $ | ||
+ | by the group $ \mathbf Z /2 $. | ||
+ | The number of non-equivalent smoothings of a topological manifold $ X $ | ||
+ | of dimension $ \geq 5 $ | ||
+ | is finite and is bounded above by the number $ \mathop{\rm ord} \sum _ {k} H ^ {k} ( X, \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm O} )) $. | ||
Similar results are not valid for Poincaré polyhedra. | Similar results are not valid for Poincaré polyhedra. | ||
− | + | $$ \tag{4 } | |
− | Of course, the existence of a lifting, for example, in (4) is a necessary condition for the existence of a PL-manifold homotopy equivalent to the Poincaré polyhedron | + | \begin{array}{lcc} |
+ | {} &{} _ {\tau _ {x} ^ \prime } & \mathop{\rm BPL} \\ | ||
+ | {} &{} &\downarrow \\ | ||
+ | X & \mathop \rightarrow \limits _ { {\tau _ {X} }} & \mathop{\rm BG} \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
+ | |||
+ | Of course, the existence of a lifting, for example, in (4) is a necessary condition for the existence of a PL-manifold homotopy equivalent to the Poincaré polyhedron $ X $, | ||
+ | but, generally speaking, it ensures (for $ n \geq 5 $) | ||
+ | only the existence of a PL-manifold $ M $ | ||
+ | and a mapping $ f: M \rightarrow X $ | ||
+ | of degree 1 such that $ \tau _ {M} = f \circ \tau _ {x} ^ \prime $. | ||
+ | The transformation of this manifold into a manifold that is homotopy equivalent to $ X $ | ||
+ | requires the technique of [[Surgery|surgery]] (reconstruction), initially developed by S.P. Novikov for the case when $ X $ | ||
+ | is a simply-connected smooth manifold of dimension $ \geq 5 $. | ||
+ | For simply-connected $ X $ | ||
+ | this technique has been generalized to the case under consideration. Thus, for a simply-connected Poincaré polyhedron $ X $ | ||
+ | a PL-manifold of dimension $ \geq 5 $ | ||
+ | homotopy equivalent to it exists if and only a lifting (4) exists. The problem of the existence of topological or smooth manifolds that are homotopy equivalent to an (even simply-connected) Poincaré polyhedron is still more complicated. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.P. Novikov, "On manifolds with free abelian group and their application" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30''' (1966) pp. 207–246 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Madsen, R.J. Milgram, "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Latour, "Double suspension d'une sphere d'homologie [d'après R. Edwards]" , ''Sem. Bourbaki Exp. 515'' , ''Lect. notes in math.'' , '''710''' , Springer (1979) pp. 169–186</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.H. Freedman, "The topology of four-dimensional manifolds" ''J. Differential Geom.'' , '''17''' (1982) pp. 357–453</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> F. Quinn, "Ends of maps III. Dimensions 4 and 5" ''J. Differential Geom.'' , '''17''' (1982) pp. 503–521</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Mandelbaum, "Four-dimensional topology: an introduction" ''Bull. Amer. Math. Soc.'' , '''2''' (1980) pp. 1–159</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R. Lashof, "The immersion approach to triangulation and smoothing" A. Liulevicius (ed.) , ''Algebraic Topology (Madison, 1970)'' , ''Proc. Symp. Pure Math.'' , '''22''' , Amer. Math. Soc. (1971) pp. 131–164</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.D. Edwards, "Approximating certain cell-like maps by homeomorphisms" ''Notices Amer. Math. Soc.'' , '''24''' : 7 (1977) pp. A649</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> F. Quinn, "The topological characterization of manifolds" ''Abstracts Amer. Math. Soc.'' , '''1''' : 7 (1980) pp. 613–614</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> J.W. Cannon, "The recognition problem: what is a topological manifold" ''Bull. Amer. Math. Soc.'' , '''84''' : 5 (1978) pp. 832–866</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> M. Spivak, "Spaces satisfying Poincaré duality" ''Topology'' , '''6''' (1967) pp. 77–101</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> N.H. Kuiper, "A short history of triangulation and related matters" P.C. Baayen (ed.) D. van Dulst (ed.) J. Oosterhoff (ed.) , ''Bicentennial Congress Wisk. Genootschap (Amsterdam 1978)'' , ''Math. Centre Tracts'' , '''100''' , CWI (1979) pp. 61–79</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.P. Novikov, "On manifolds with free abelian group and their application" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30''' (1966) pp. 207–246 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Madsen, R.J. Milgram, "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Latour, "Double suspension d'une sphere d'homologie [d'après R. Edwards]" , ''Sem. Bourbaki Exp. 515'' , ''Lect. notes in math.'' , '''710''' , Springer (1979) pp. 169–186</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.H. Freedman, "The topology of four-dimensional manifolds" ''J. Differential Geom.'' , '''17''' (1982) pp. 357–453</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> F. Quinn, "Ends of maps III. Dimensions 4 and 5" ''J. Differential Geom.'' , '''17''' (1982) pp. 503–521</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Mandelbaum, "Four-dimensional topology: an introduction" ''Bull. Amer. Math. Soc.'' , '''2''' (1980) pp. 1–159</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R. Lashof, "The immersion approach to triangulation and smoothing" A. Liulevicius (ed.) , ''Algebraic Topology (Madison, 1970)'' , ''Proc. Symp. Pure Math.'' , '''22''' , Amer. Math. Soc. (1971) pp. 131–164</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.D. Edwards, "Approximating certain cell-like maps by homeomorphisms" ''Notices Amer. Math. Soc.'' , '''24''' : 7 (1977) pp. A649</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> F. Quinn, "The topological characterization of manifolds" ''Abstracts Amer. Math. Soc.'' , '''1''' : 7 (1980) pp. 613–614</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> J.W. Cannon, "The recognition problem: what is a topological manifold" ''Bull. Amer. Math. Soc.'' , '''84''' : 5 (1978) pp. 832–866</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> M. Spivak, "Spaces satisfying Poincaré duality" ''Topology'' , '''6''' (1967) pp. 77–101</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> N.H. Kuiper, "A short history of triangulation and related matters" P.C. Baayen (ed.) D. van Dulst (ed.) J. Oosterhoff (ed.) , ''Bicentennial Congress Wisk. Genootschap (Amsterdam 1978)'' , ''Math. Centre Tracts'' , '''100''' , CWI (1979) pp. 61–79</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | It was found recently [[#References|[a1]]] that the behaviour of smooth manifolds of dimension | + | It was found recently [[#References|[a1]]] that the behaviour of smooth manifolds of dimension $ 4 $ |
+ | is radically different from those in dimensions $ \geq 5 $. | ||
+ | Among very numerous recent results one has: | ||
− | i) There is a countably infinite family of smooth, compact, simply-connected | + | i) There is a countably infinite family of smooth, compact, simply-connected $ 4 $- |
+ | manifolds, all mutually homeomorphic but with distinct smooth structure. | ||
− | ii) There is an uncountable family of smooth | + | ii) There is an uncountable family of smooth $ 4 $- |
+ | manifolds, each homeomorphic to $ \mathbf R ^ {4} $ | ||
+ | but with mutually distinct smooth structure. | ||
− | iii) There are simply-connected smooth | + | iii) There are simply-connected smooth $ 4 $- |
+ | manifolds which are $ h $- | ||
+ | cobordant (cf. [[H-cobordism| $ h $- | ||
+ | cobordism]]) but not diffeomorphic. | ||
For the lifting problem (3) see [[#References|[a2]]]–[[#References|[a3]]]. | For the lifting problem (3) see [[#References|[a2]]]–[[#References|[a3]]]. | ||
− | For the Kirby–Siebenmann theorem, the arrow | + | For the Kirby–Siebenmann theorem, the arrow $ \mathop{\rm TOP} \rightarrow \mathop{\rm P} $, |
+ | see also [[#References|[a4]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.M. Donaldson, "The geometry of 4-manifolds" A.M. Gleason (ed.) , ''Proc. Internat. Congress Mathematicians (Berkeley, 1986)'' , Amer. Math. Soc. (1987) pp. 43–54</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.W. Hirsch, B. Mazur, "Smoothings of piecewise-linear manifolds" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Lashof, M. Rothenberg, "Microbundles and smoothing" ''Topology'' , '''3''' (1965) pp. 357–388</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.C. Kirby, L.C. Siebenmann, "Foundational essays on topological manifolds, smoothings, and triangulations" , Princeton Univ. Press (1977)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.M. Donaldson, "The geometry of 4-manifolds" A.M. Gleason (ed.) , ''Proc. Internat. Congress Mathematicians (Berkeley, 1986)'' , Amer. Math. Soc. (1987) pp. 43–54</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.W. Hirsch, B. Mazur, "Smoothings of piecewise-linear manifolds" , Princeton Univ. Press (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Lashof, M. Rothenberg, "Microbundles and smoothing" ''Topology'' , '''3''' (1965) pp. 357–388</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.C. Kirby, L.C. Siebenmann, "Foundational essays on topological manifolds, smoothings, and triangulations" , Princeton Univ. Press (1977)</TD></TR></table> |
Latest revision as of 14:56, 7 June 2020
The branch of the theory of manifolds (cf. Manifold) concerned with the study of relations between different types of manifolds.
The most important types of finite-dimensional manifolds and relations between them are illustrated in (1).
$$ \tag{1 } \begin{array}{ccc} \mathop{\rm P} &{} & \mathop{\rm P} ( \mathop{\rm ANR} ) \\ \uparrow &{} &\uparrow \\ \mathop{\rm H} &{} & \mathop{\rm H} ( \mathop{\rm ANR} ) \\ {} &{} \mathop{\rm TOP} &{} \\ \mathop{\rm TRI} &\uparrow & \mathop{\rm Lip} \\ {} & \mathop{\rm Handle} &{} \\ {} &\uparrow &{} \\ {} & \mathop{\rm PL} &{} \\ {} &\uparrow &{} \\ {} & \mathop{\rm Diff} &{} \\ \end{array} $$
Here $ \mathop{\rm Diff} $ is the category of differentiable (smooth) manifolds; $ \mathop{\rm PL} $ is the category of piecewise-linear (combinatorial) manifolds; $ \mathop{\rm TRI} $ is the category of topological manifolds that are polyhedra; $ \mathop{\rm Handle} $ is the category of topological manifolds admitting a topological decomposition into handles; $ \mathop{\rm Lip} $ is the category of Lipschitz manifolds (with Lipschitz transition mappings between local charts); $ \mathop{\rm TOP} $ is the category of topological manifolds (Hausdorff and with a countable base); $ \mathop{\rm H} $ is the category of polyhedral homology manifolds without boundary (polyhedra, the boundary of the star of each vertex of which has the homology of the sphere of corresponding dimension); $ \mathop{\rm H} ( \mathop{\rm ANR} ) $ is the category of generalized manifolds (finite-dimensional absolute neighbourhood retracts $ X $ that are homology manifolds without boundary, i.e. with the property that for any point $ x \in X $ the group $ H ^ {*} ( X, X \setminus x; \mathbf Z ) $ is isomorphic to the group $ H ^ {*} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0; \mathbf Z ) $); $ \mathop{\rm P} ( \mathop{\rm ANR} ) $ is the category of Poincaré spaces (finite-dimensional absolute neighbourhood retracts $ X $ for which there exists a number $ n $ and an element $ \mu \in H _ {n} ( X) $ such that $ H _ {r} ( X, \mathbf Z ) = 0 $ when $ r \geq n + 1 $, and the mapping $ \mu \cap : H ^ {r} ( X) \rightarrow H _ {n - r } ( X) $ is an isomorphism for all $ r $); and $ \mathop{\rm P} $ is the category of Poincaré polyhedra (the subcategory of the preceding category consisting of polyhedra).
The arrows of (1), apart from the 3 lower ones and the arrows $ \mathop{\rm H} \rightarrow \mathop{\rm TOP} \rightarrow \mathop{\rm P} $, denote functors with the structure of forgetting functors. The arrow $ \mathop{\rm Diff} \rightarrow \mathop{\rm PL} $ expresses Whitehead's theorem on the triangulability of smooth manifolds. In dimensions $ < 8 $ this arrow is reversible (an arbitrary $ \mathop{\rm PL} $- manifold is smoothable) but in dimensions $ \geq 8 $ there are non-smoothable $ \mathop{\rm PL} $- manifolds and even $ \mathop{\rm PL} $- manifolds that are homotopy inequivalent to any smooth manifold. The imbedding $ \mathop{\rm PL} \subset \mathop{\rm TRI} $ is also irreversible in the same strong sense (there exist polyhedral manifolds of dimension $ \geq 5 $ that are homotopy inequivalent to any $ \mathop{\rm PL} $- manifold). Here already for the sphere $ S ^ {n} $, $ n \geq 5 $, there exist triangulations in which it is not a $ \mathop{\rm PL} $- manifold.
The arrow $ \mathop{\rm PL} \rightarrow \mathop{\rm Handle} $ expresses the fact that every $ \mathop{\rm PL} $- manifold has a handle decomposition.
The arrow $ \mathop{\rm PL} \rightarrow \mathop{\rm Lip} $ expresses the theorem on the existence of a Lipschitz structure on an arbitrary $ \mathop{\rm PL} $- manifold.
The arrow $ \mathop{\rm Handle} \rightarrow \mathop{\rm TOP} $ is reversible if $ n \neq 4 $ and irreversible if $ n = 4 $( an arbitrary topological manifold of dimension $ n \neq 4 $ admits a handle decomposition and there exist four-dimensional topological manifolds for which this is not true).
Similarly, if $ n \neq 4 $ the arrow $ \mathop{\rm Lip} \rightarrow \mathop{\rm TOP} $ is reversible (and moreover in a unique way).
The question on the reversibility of the arrow $ \mathop{\rm TRI} \rightarrow \mathop{\rm TOP} $ gives the classical unsolved problem on the triangulability of arbitrary topological manifolds.
The arrow $ \mathop{\rm H} \rightarrow \mathop{\rm P} $ is irreversible in the strong sense (there exist Poincaré polyhedra that are homotopy inequivalent to any homology manifold).
The arrow $ \mathop{\rm H} \rightarrow \mathop{\rm TOP} $ expresses a theorem on the homotopy equivalence of an arbitrary homology manifold of dimension $ n \geq 5 $ to a topological manifold.
The arrow $ \mathop{\rm TOP} \rightarrow \mathop{\rm P} $ expresses the theorem on the homotopy equivalence of an arbitrary topological manifold to a polyhedron.
The imbedding $ \mathop{\rm TOP} \subset \mathop{\rm H} ( \mathop{\rm ANR} ) $ expresses that an arbitrary topological manifold is an $ \mathop{\rm ANR} $.
The similar question for the arrows $ \mathop{\rm Diff} \rightarrow \mathop{\rm PL} \rightarrow \mathop{\rm TOP} \rightarrow \mathop{\rm P} $ has been solved using the theory of stable bundles (respectively, vector, piecewise-linear, topological, and spherical bundles), i.e. by examining the homotopy classes of mappings of a manifold $ X $ into the corresponding classifying spaces BO, BPL, BTOP, BG.
There exist canonical composition mappings
$$ \tag{2 } \mathop{\rm BO} \rightarrow \mathop{\rm BPL} \rightarrow \mathop{\rm BTOP} \rightarrow \mathop{\rm BG} , $$
of which the homotopy fibres and the homotopy fibres of their compositions are denoted, respectively, by the symbols
$$ \mathop{\rm PL} / \mathop{\rm O} , \mathop{\rm TOP} / \mathop{\rm O} , \mathop{\rm G} / \mathop{\rm O} , \mathop{\rm TOP} / \mathop{\rm PL} ,\ \mathop{\rm G} / \mathop{\rm PL} , \mathop{\rm G} / \mathop{\rm TOP} . $$
For every manifold $ X $ from a category $ \mathop{\rm Diff} $, $ \mathop{\rm PL} $, $ \mathop{\rm TOP} $, $ \mathop{\rm P} $ there exists a normal stable bundle, i.e. a canonical mapping $ \tau _ {X} $ from $ X $ into the corresponding classifying space.
In the transition from a "narrow" category of manifolds to a "wider" one, for example, from smooth to piecewise-linear, the mapping $ \tau _ {X} $ is composed with the corresponding mappings (2). Hence, for example, for a PL-manifold $ X $ there exists a smooth manifold PL-homeomorphic to it ( $ X $ is said to be smoothable) only if the lifting problem (3), the homotopy obstruction to the solution of which lies in the groups $ H ^ {i + 1 } ( X, \pi _ {i} ( \mathop{\rm PL} / \mathop{\rm O} )) $, is solvable:
$$ \tag{3 } \begin{array}{lcc} {} &{} & \mathop{\rm BO} \\ {} &{} &\downarrow \\ X & \mathop \rightarrow \limits _ { {\tau _ {X} }} & \mathop{\rm BPL} \\ \end{array} $$
Here it turns out that the solvability of (3) is not only necessary but also sufficient for the smoothability of a PL-manifold $ X $( and all non-equivalent smoothings are in bijective correspondence with the set $ [ X, \mathop{\rm PL} / \mathop{\rm O} ] $ of homotopy classes of mappings $ X \rightarrow \mathop{\rm PL} / \mathop{\rm O} $).
By replacing $ \mathop{\rm PL} / \mathop{\rm O} $ by $ \mathop{\rm TOP} / \mathop{\rm O} $, the same holds for the smoothability of topological manifolds $ X $ of dimension $ \geq 5 $, and also (by replacing $ \mathop{\rm PL} / \mathop{\rm O} $ by $ \mathop{\rm TOP} / \mathop{\rm O} $) for their $ \mathop{\rm PL} $- triangulations. The homotopy group $ \Gamma _ {k} = \pi _ {k} ( \mathop{\rm PL} / \mathop{\rm O} ) $ is isomorphic to the group of classes of oriented diffeomorphic smooth manifolds obtained by glueing the boundaries of two $ k $- dimensional spheres. This group is finite for all $ k $( and is even trivial for $ k \leq 6 $). Therefore, the number of non-equivalent smoothings of an arbitrary PL-manifold $ X $ is finite and is bounded above by the number
$$ \mathop{\rm ord} \sum _ { k } H ^ {k} ( X, \pi _ {k} ( \mathop{\rm PL} / \mathop{\rm O} )). $$
The homotopy group $ \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm PL} ) $ vanishes, with one exception: $ \pi _ {3} ( \mathop{\rm TOP} / \mathop{\rm PL} ) = \mathbf Z /2 $. Thus, the existence of a $ \mathop{\rm PL} $- triangulation of a topological manifold $ X $ of dimension $ \geq 5 $ is determined by the vanishing of a certain cohomology class $ \Delta ( X) \in H ^ {4} ( X, \mathbf Z /2) $, while the set of non-equivalent $ \mathop{\rm PL} $- triangulations of $ X $ is in bijective correspondence with the group $ H ^ {3} ( X, \mathbf Z /2) $.
The group $ \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm O} ) $ coincides with the group $ \Gamma _ {k} $ if $ k \neq 3 $ and differs from $ \Gamma _ {k} $ for $ k = 3 $ by the group $ \mathbf Z /2 $. The number of non-equivalent smoothings of a topological manifold $ X $ of dimension $ \geq 5 $ is finite and is bounded above by the number $ \mathop{\rm ord} \sum _ {k} H ^ {k} ( X, \pi _ {k} ( \mathop{\rm TOP} / \mathop{\rm O} )) $.
Similar results are not valid for Poincaré polyhedra.
$$ \tag{4 } \begin{array}{lcc} {} &{} _ {\tau _ {x} ^ \prime } & \mathop{\rm BPL} \\ {} &{} &\downarrow \\ X & \mathop \rightarrow \limits _ { {\tau _ {X} }} & \mathop{\rm BG} \\ \end{array} $$
Of course, the existence of a lifting, for example, in (4) is a necessary condition for the existence of a PL-manifold homotopy equivalent to the Poincaré polyhedron $ X $, but, generally speaking, it ensures (for $ n \geq 5 $) only the existence of a PL-manifold $ M $ and a mapping $ f: M \rightarrow X $ of degree 1 such that $ \tau _ {M} = f \circ \tau _ {x} ^ \prime $. The transformation of this manifold into a manifold that is homotopy equivalent to $ X $ requires the technique of surgery (reconstruction), initially developed by S.P. Novikov for the case when $ X $ is a simply-connected smooth manifold of dimension $ \geq 5 $. For simply-connected $ X $ this technique has been generalized to the case under consideration. Thus, for a simply-connected Poincaré polyhedron $ X $ a PL-manifold of dimension $ \geq 5 $ homotopy equivalent to it exists if and only a lifting (4) exists. The problem of the existence of topological or smooth manifolds that are homotopy equivalent to an (even simply-connected) Poincaré polyhedron is still more complicated.
References
[1] | S.P. Novikov, "On manifolds with free abelian group and their application" Izv. Akad. Nauk SSSR Ser. Mat. , 30 (1966) pp. 207–246 (In Russian) |
[2] | J. Madsen, R.J. Milgram, "The classifying spaces for surgery and cobordism of manifolds" , Princeton Univ. Press (1979) |
[3] | F. Latour, "Double suspension d'une sphere d'homologie [d'après R. Edwards]" , Sem. Bourbaki Exp. 515 , Lect. notes in math. , 710 , Springer (1979) pp. 169–186 |
[4] | M.H. Freedman, "The topology of four-dimensional manifolds" J. Differential Geom. , 17 (1982) pp. 357–453 |
[5] | F. Quinn, "Ends of maps III. Dimensions 4 and 5" J. Differential Geom. , 17 (1982) pp. 503–521 |
[6] | R. Mandelbaum, "Four-dimensional topology: an introduction" Bull. Amer. Math. Soc. , 2 (1980) pp. 1–159 |
[7] | R. Lashof, "The immersion approach to triangulation and smoothing" A. Liulevicius (ed.) , Algebraic Topology (Madison, 1970) , Proc. Symp. Pure Math. , 22 , Amer. Math. Soc. (1971) pp. 131–164 |
[8] | R.D. Edwards, "Approximating certain cell-like maps by homeomorphisms" Notices Amer. Math. Soc. , 24 : 7 (1977) pp. A649 |
[9] | F. Quinn, "The topological characterization of manifolds" Abstracts Amer. Math. Soc. , 1 : 7 (1980) pp. 613–614 |
[10] | J.W. Cannon, "The recognition problem: what is a topological manifold" Bull. Amer. Math. Soc. , 84 : 5 (1978) pp. 832–866 |
[11] | M. Spivak, "Spaces satisfying Poincaré duality" Topology , 6 (1967) pp. 77–101 |
[12] | N.H. Kuiper, "A short history of triangulation and related matters" P.C. Baayen (ed.) D. van Dulst (ed.) J. Oosterhoff (ed.) , Bicentennial Congress Wisk. Genootschap (Amsterdam 1978) , Math. Centre Tracts , 100 , CWI (1979) pp. 61–79 |
Comments
It was found recently [a1] that the behaviour of smooth manifolds of dimension $ 4 $ is radically different from those in dimensions $ \geq 5 $. Among very numerous recent results one has:
i) There is a countably infinite family of smooth, compact, simply-connected $ 4 $- manifolds, all mutually homeomorphic but with distinct smooth structure.
ii) There is an uncountable family of smooth $ 4 $- manifolds, each homeomorphic to $ \mathbf R ^ {4} $ but with mutually distinct smooth structure.
iii) There are simply-connected smooth $ 4 $- manifolds which are $ h $- cobordant (cf. $ h $- cobordism) but not diffeomorphic.
For the lifting problem (3) see [a2]–[a3].
For the Kirby–Siebenmann theorem, the arrow $ \mathop{\rm TOP} \rightarrow \mathop{\rm P} $, see also [a4].
References
[a1] | S.M. Donaldson, "The geometry of 4-manifolds" A.M. Gleason (ed.) , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , Amer. Math. Soc. (1987) pp. 43–54 |
[a2] | M.W. Hirsch, B. Mazur, "Smoothings of piecewise-linear manifolds" , Princeton Univ. Press (1974) |
[a3] | R. Lashof, M. Rothenberg, "Microbundles and smoothing" Topology , 3 (1965) pp. 357–388 |
[a4] | R.C. Kirby, L.C. Siebenmann, "Foundational essays on topological manifolds, smoothings, and triangulations" , Princeton Univ. Press (1977) |
Topology of manifolds. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Topology_of_manifolds&oldid=18354