Difference between revisions of "Super-group"
Ulf Rehmann (talk | contribs) m (Undo revision 48908 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0911701.png | ||
| + | $#A+1 = 21 n = 0 | ||
| + | $#C+1 = 21 : ~/encyclopedia/old_files/data/S091/S.0901170 Super\AAhgroup, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Lie super-group'' | ''Lie super-group'' | ||
| − | A group object in the category of super-manifolds (cf. [[Super-manifold|Super-manifold]]). A super-group | + | A group object in the category of super-manifolds (cf. [[Super-manifold|Super-manifold]]). A super-group $ {\mathcal G} $ |
| + | is defined by a functor $ {\mathcal G} $ | ||
| + | from the category of commutative superalgebras into the category of groups. Lie's theorems (cf. [[Lie theorem|Lie theorem]]) are transferred to super-groups, a fact that gives the correspondence between super-groups and finite-dimensional Lie superalgebras (cf. [[Superalgebra|Superalgebra]]). | ||
===Examples.=== | ===Examples.=== | ||
| + | 1) The super-group $ \mathop{\rm GL} _ {n\mid } m $ | ||
| + | is defined by the functor $ C \mapsto \mathop{\rm GL} _ {n\mid } m ( C ) $ | ||
| + | into groups of even invertible matrices from $ M _ {n\mid } m ( C) $( | ||
| + | see [[Super-space|Super-space]]), i.e. of matrices in the form | ||
| − | + | $$ | |
| + | \left ( | ||
| + | \begin{array}{cc} | ||
| + | X & Y \\ | ||
| + | Z & T \\ | ||
| + | \end{array} | ||
| + | \right ) , | ||
| + | $$ | ||
| − | + | where $ X, T $ | |
| + | are invertible matrices of orders $ n, m $ | ||
| + | over $ C _ {\overline{0}\; } $, | ||
| + | while $ Y, Z $ | ||
| + | are matrices over $ C _ {\overline{1}\; } $. | ||
| + | A homomorphism $ \mathop{\rm GL} _ {n\mid } m ( C) \rightarrow C _ {\overline{0}\; } ^ \star $ | ||
| + | is defined by the formula | ||
| − | + | $$ | |
| + | \mathop{\rm Ber} \left ( | ||
| + | \begin{array}{cc} | ||
| + | X & Y \\ | ||
| + | Z & T \\ | ||
| + | \end{array} | ||
| − | + | \right ) = \mathop{\rm det} ( X- YT ^ {-} 1 Z) \mathop{\rm det} T ^ {-} 1 | |
| + | $$ | ||
(the Berezinian); | (the Berezinian); | ||
| − | 2) | + | 2) $ \mathop{\rm SL} _ {n\mid } m = \mathop{\rm Ker} \mathop{\rm Ber} $; |
| − | 3) | + | 3) $ \mathop{\rm OSp} _ {n\mid } 2m \subset \mathop{\rm GL} _ {n\mid } 2m $ |
| + | and $ \Pi _ {n} \subset \mathop{\rm GL} _ {n\mid } m $; | ||
| + | they leave invariant an even, or odd, non-degenerate symmetric bilinear form. | ||
| − | To every super-group | + | To every super-group $ {\mathcal G} $ |
| + | and super-subgroup $ {\mathcal H} $ | ||
| + | of it there is related a super-manifold $ {\mathcal G} / {\mathcal H} $, | ||
| + | represented by a functor $ C \mapsto {\mathcal G} ( C) / {\mathcal H} ( C) $. | ||
| + | This super-manifold is a homogeneous space of $ {\mathcal G} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on supermanifolds'' , Kluwer (1990)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D.A. Leites (ed.) , ''Seminar on supermanifolds'' , Kluwer (1990)</TD></TR></table> | ||
Revision as of 14:55, 7 June 2020
Lie super-group
A group object in the category of super-manifolds (cf. Super-manifold). A super-group $ {\mathcal G} $ is defined by a functor $ {\mathcal G} $ from the category of commutative superalgebras into the category of groups. Lie's theorems (cf. Lie theorem) are transferred to super-groups, a fact that gives the correspondence between super-groups and finite-dimensional Lie superalgebras (cf. Superalgebra).
Examples.
1) The super-group $ \mathop{\rm GL} _ {n\mid } m $ is defined by the functor $ C \mapsto \mathop{\rm GL} _ {n\mid } m ( C ) $ into groups of even invertible matrices from $ M _ {n\mid } m ( C) $( see Super-space), i.e. of matrices in the form
$$ \left ( \begin{array}{cc} X & Y \\ Z & T \\ \end{array} \right ) , $$
where $ X, T $ are invertible matrices of orders $ n, m $ over $ C _ {\overline{0}\; } $, while $ Y, Z $ are matrices over $ C _ {\overline{1}\; } $. A homomorphism $ \mathop{\rm GL} _ {n\mid } m ( C) \rightarrow C _ {\overline{0}\; } ^ \star $ is defined by the formula
$$ \mathop{\rm Ber} \left ( \begin{array}{cc} X & Y \\ Z & T \\ \end{array} \right ) = \mathop{\rm det} ( X- YT ^ {-} 1 Z) \mathop{\rm det} T ^ {-} 1 $$
(the Berezinian);
2) $ \mathop{\rm SL} _ {n\mid } m = \mathop{\rm Ker} \mathop{\rm Ber} $;
3) $ \mathop{\rm OSp} _ {n\mid } 2m \subset \mathop{\rm GL} _ {n\mid } 2m $ and $ \Pi _ {n} \subset \mathop{\rm GL} _ {n\mid } m $; they leave invariant an even, or odd, non-degenerate symmetric bilinear form.
To every super-group $ {\mathcal G} $ and super-subgroup $ {\mathcal H} $ of it there is related a super-manifold $ {\mathcal G} / {\mathcal H} $, represented by a functor $ C \mapsto {\mathcal G} ( C) / {\mathcal H} ( C) $. This super-manifold is a homogeneous space of $ {\mathcal G} $.
References
| [1] | Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian) |
| [2] | F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian) |
| [3] | D.A. Leites (ed.) , Seminar on supermanifolds , Kluwer (1990) |
Super-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Super-group&oldid=49457