Difference between revisions of "Orthogonal matrix"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48075 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Matrix|matrix]] over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703201.png" /> with identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703202.png" /> for which the [[Transposed matrix|transposed matrix]] coincides with the inverse. The determinant of an orthogonal matrix is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703203.png" />. The set of all orthogonal matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703204.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703205.png" /> forms a subgroup of the [[General linear group|general linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703206.png" />. For any real orthogonal matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703207.png" /> there is a real orthogonal matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703208.png" /> such that |
− | o0703201.png | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o0703209.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
where | where | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032010.png" /></td> </tr></table> | |
− | |||
− | A non-singular complex matrix | + | A non-singular complex matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032011.png" /> is similar to a complex orthogonal matrix if and only if its system of [[Elementary divisors|elementary divisors]] possesses the following properties: |
− | is similar to a complex orthogonal matrix if and only if its system of [[Elementary divisors|elementary divisors]] possesses the following properties: | ||
− | 1) for | + | 1) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032012.png" />, the elementary divisors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032014.png" /> are repeated the same number of times; |
− | the elementary divisors | ||
− | and | ||
− | are repeated the same number of times; | ||
− | 2) each elementary divisor of the form | + | 2) each elementary divisor of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032015.png" /> is repeated an even number of times. |
− | is repeated an even number of times. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
− | The mapping | + | The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032016.png" /> defined by an orthogonal matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032017.png" /> with respect to the standard basis, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032019.png" />, preserves the standard inner product and hence defines an orthogonal mapping. More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032021.png" /> are inner product spaces with inner products <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032023.png" />, then a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032025.png" /> is called an orthogonal mapping. |
− | defined by an orthogonal matrix | ||
− | with respect to the standard basis, | ||
− | |||
− | preserves the standard inner product and hence defines an orthogonal mapping. More generally, if | ||
− | and | ||
− | are inner product spaces with inner products | ||
− | |||
− | then a linear mapping | ||
− | such that | ||
− | is called an orthogonal mapping. | ||
− | Any non-singular (complex or real) matrix | + | Any non-singular (complex or real) matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032026.png" /> admits a [[Polar decomposition|polar decomposition]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032027.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032029.png" /> symmetric and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070320/o07032031.png" /> orthogonal. |
− | admits a [[Polar decomposition|polar decomposition]] | ||
− | with | ||
− | and | ||
− | symmetric and | ||
− | and | ||
− | orthogonal. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1959) pp. 263ff (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1959) pp. 263ff (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932)</TD></TR></table> |
Revision as of 14:52, 7 June 2020
A matrix over a commutative ring with identity for which the transposed matrix coincides with the inverse. The determinant of an orthogonal matrix is equal to . The set of all orthogonal matrices of order over forms a subgroup of the general linear group . For any real orthogonal matrix there is a real orthogonal matrix such that
where
A non-singular complex matrix is similar to a complex orthogonal matrix if and only if its system of elementary divisors possesses the following properties:
1) for , the elementary divisors and are repeated the same number of times;
2) each elementary divisor of the form is repeated an even number of times.
References
[1] | A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian) |
Comments
The mapping defined by an orthogonal matrix with respect to the standard basis, , , preserves the standard inner product and hence defines an orthogonal mapping. More generally, if and are inner product spaces with inner products , , then a linear mapping such that is called an orthogonal mapping.
Any non-singular (complex or real) matrix admits a polar decomposition with and symmetric and and orthogonal.
References
[a1] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1959) pp. 263ff (Translated from Russian) |
[a2] | W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43 |
[a3] | H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932) |
Orthogonal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonal_matrix&oldid=48075