Namespaces
Variants
Actions

Difference between revisions of "Yang-Baxter equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990201.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990202.png" />-matrix with entries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990203.png" />. View <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990204.png" /> as an endomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990205.png" /> with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990206.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990207.png" />), so that
+
<!--
 +
y0990201.png
 +
$#A+1 = 56 n = 4
 +
$#C+1 = 56 : ~/encyclopedia/old_files/data/Z099/Z.0909020 Yang\ANDBaxter equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990208.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The constant Yang–Baxter equation, or quantum Yang–Baxter equation, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y0990209.png" /> is:
+
Let  $  R $
 +
be an  $  ( n  ^ {2} \times n  ^ {2} ) $-
 +
matrix with entries  $  r _ {kl}  ^ {ij} $.
 +
View  $  R $
 +
as an endomorphism of  $  \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} $
 +
with basis  $  e _ {i} \otimes e _ {j} $(
 +
$  i, j = 1 \dots n $),  
 +
so that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
$$ \tag{a1 }
 +
R( e _ {i} \otimes e _ {j} )  = \sum _ {a ,b }
 +
r _ {ij}  ^ {ab} e _ {a} \otimes e _ {b} .
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902011.png" /> is the endomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902012.png" /> acting like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902013.png" /> on the two factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902014.png" /> and leaving the third factor alone. Thus, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902016.png" /> and
+
The constant Yang–Baxter equation, or quantum Yang–Baxter equation, for  $  R $
 +
is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
$$ \tag{a2 }
 +
R  ^ {12} R  ^ {13} R  ^ {23}  = R  ^ {23} R  ^ {13} R  ^ {12} ,
 +
$$
 +
 
 +
where  $  R  ^ {ij} $
 +
is the endomorphism of  $  \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} $
 +
acting like  $  R $
 +
on the two factors  $  i, j $
 +
and leaving the third factor alone. Thus,  $  R  ^ {12} = R \otimes  \mathop{\rm id} $,
 +
$  R  ^ {23} = \mathop{\rm id} \otimes R $
 +
and
 +
 
 +
$$ \tag{a3 }
 +
R  ^ {13} ( e _ {i} \otimes e _ {j} \otimes e _ {k} ) = \
 +
\sum _ {a, b } r _ {ik}  ^ {ab} e _ {a} \otimes e _ {j} \otimes e _ {b} .
 +
$$
  
 
An alternative form of the Yang–Baxter equation is:
 
An alternative form of the Yang–Baxter equation is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
$$ \tag{a4 }
 +
\widetilde{R}  {}  ^ {12} \widetilde{R}  {}  ^ {23} \widetilde{R}  {}  ^ {12}  = \
 +
\widetilde{R}  {}  ^ {23} \widetilde{R}  {}  ^ {12} \widetilde{R}  {}  ^ {23} .
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902019.png" /> is a solution of (a2) if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902020.png" /> is a solution of (a4), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902021.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902022.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902024.png" />, which switches the two factors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902025.png" />.
+
$  R $
 +
is a solution of (a2) if and only if $  \widetilde{R}  = PR $
 +
is a solution of (a4), where $  P $
 +
is the $  ( n  ^ {2} \times n  ^ {2} ) $-
 +
matrix $  P = ( p _ {kl}  ^ {ij} ) $,  
 +
$  p _ {kl}  ^ {ij} = \delta _ {il} \delta _ {jk} $,  
 +
which switches the two factors of $  \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} $.
  
The Yang–Baxter equation (a2) can be interpreted as a condition on the interaction of relativistic particles with internal state space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902026.png" />, [[#References|[a2]]]. Let the interaction between two particles with rapidities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902027.png" /> be given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902028.png" />; then the Yang–Baxter equation
+
The Yang–Baxter equation (a2) can be interpreted as a condition on the interaction of relativistic particles with internal state space $  \mathbf C  ^ {n} $,  
 +
[[#References|[a2]]]. Let the interaction between two particles with rapidities $  \lambda , \mu $
 +
be given by $  R ( \lambda , \mu ) : \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} \rightarrow \mathbf C  ^ {n} \otimes \mathbf C  ^ {n} $;  
 +
then the Yang–Baxter equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a5)</td></tr></table>
+
$$ \tag{a5 }
 +
R  ^ {12} ( \lambda , \mu ) R  ^ {13} ( \lambda , \nu )
 +
R  ^ {23} ( \mu , \nu ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902030.png" /></td> </tr></table>
+
$$
 +
= \
 +
R  ^ {23} ( \mu , \nu ) R  ^ {13} ( \lambda , \nu ) R  ^ {12} ( \lambda , \mu )
 +
$$
  
 
expresses the condition that the interaction between three particles is determined by the two particle interactions and is independent of which particles interact first. In this connection the Yang–Baxter equation is also called the factorization equation. It occurred first in [[#References|[a5]]], [[#References|[a6]]]. In lattice statistical mechanics there is another interpretation of the Yang–Baxter equation, [[#References|[a3]]], [[#References|[a4]]]. In this context it is also called the triangle equation or the star-triangle equation. Its sources go back to [[#References|[a7]]].
 
expresses the condition that the interaction between three particles is determined by the two particle interactions and is independent of which particles interact first. In this connection the Yang–Baxter equation is also called the factorization equation. It occurred first in [[#References|[a5]]], [[#References|[a6]]]. In lattice statistical mechanics there is another interpretation of the Yang–Baxter equation, [[#References|[a3]]], [[#References|[a4]]]. In this context it is also called the triangle equation or the star-triangle equation. Its sources go back to [[#References|[a7]]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902031.png" /> satisfies (a4), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902032.png" />, where there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902033.png" /> factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902034.png" /> before <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902036.png" /> factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902037.png" /> after <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902038.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902039.png" /> defines a representation of the braid group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902041.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902042.png" />-th simple braid, cf. [[Braid theory|Braid theory]]. This is one main reason for the interconnection between knot and braid theory on the one hand and quantum field theory and statistical mechanics on the other, cf. e.g. [[#References|[a9]]].
+
If $  \widetilde{R}  $
 +
satisfies (a4), let $  \widetilde{R}  {} _ {i} = \mathop{\rm id} \otimes \dots \otimes  \mathop{\rm id} \otimes \widetilde{R}  \otimes  \mathop{\rm id} \otimes \dots \otimes  \mathop{\rm id} $,  
 +
where there are $  i- 1 $
 +
factors $  \mathop{\rm id} $
 +
before $  \widetilde{R}  $
 +
and $  n - i - 1 $
 +
factors $  \mathop{\rm id} $
 +
after $  \widetilde{R}  $.  
 +
Then $  \sigma _ {i} \mapsto \widetilde{R}  {} _ {i} $
 +
defines a representation of the braid group $  B _ {n} $,  
 +
where $  \sigma _ {i} $
 +
is the $  i $-
 +
th simple braid, cf. [[Braid theory|Braid theory]]. This is one main reason for the interconnection between knot and braid theory on the one hand and quantum field theory and statistical mechanics on the other, cf. e.g. [[#References|[a9]]].
  
 
A generalization of the Yang–Baxter equation are the fundamental commutation relations
 
A generalization of the Yang–Baxter equation are the fundamental commutation relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902043.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a6)</td></tr></table>
+
$$ \tag{a6 }
 +
R ( \lambda , \mu ) ( T ( \lambda ) \otimes T( \mu ))  = \
 +
( T ( \mu ) \otimes T ( \lambda )) R( \lambda , \mu ) ,
 +
$$
  
introduced by L.D. Faddeev, E.K. Sklyanin, L.A. Takhtazhyan as a basis for their quantum inverse scattering method, [[#References|[a8]]]. In (a6), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902044.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902045.png" />-matrix of scalars (as before; usually satisfying the Yang–Baxter equation) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902046.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902047.png" />-matrix of operators. Equation (a6) serves as a starting point for using an (algebraic) Bethe Ansatz for calculating eigenvalues and eigenvectors of the Hamiltonian operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902048.png" />. Solutions of (a6) relate to families of representations of certain Hopf algebras, in particular (duals of) quasi-triangular Hopf algebras, cf. [[Quantum groups|Quantum groups]] and [[#References|[a14]]], [[#References|[a15]]], [[#References|[a11]]].
+
introduced by L.D. Faddeev, E.K. Sklyanin, L.A. Takhtazhyan as a basis for their quantum inverse scattering method, [[#References|[a8]]]. In (a6), $  R ( \lambda , \mu ) $
 +
is an $  ( n  ^ {2} \times n  ^ {2} ) $-
 +
matrix of scalars (as before; usually satisfying the Yang–Baxter equation) and $  T ( \lambda ) $
 +
is an $  ( n \times n ) $-
 +
matrix of operators. Equation (a6) serves as a starting point for using an (algebraic) Bethe Ansatz for calculating eigenvalues and eigenvectors of the Hamiltonian operator $  t( \lambda ) = \mathop{\rm Tr} ( T ( \lambda )) $.  
 +
Solutions of (a6) relate to families of representations of certain Hopf algebras, in particular (duals of) quasi-triangular Hopf algebras, cf. [[Quantum groups|Quantum groups]] and [[#References|[a14]]], [[#References|[a15]]], [[#References|[a11]]].
  
 
The classical Yang–Baxter equation is the semi-classical limit of (a2). It is
 
The classical Yang–Baxter equation is the semi-classical limit of (a2). It is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a7)</td></tr></table>
+
$$ \tag{a7 }
 +
[ X  ^ {12} ( u _ {1} , u _ {2} ) , X  ^ {13}
 +
( u _ {1} , u _ {3} ) ] +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902050.png" /></td> </tr></table>
+
$$
 +
+
 +
[ X  ^ {12} ( u _ {1} , u _ {2} ), X  ^ {23} ( u _ {2} , u _ {3} ) ]+ [ X  ^ {13} ( u _ {1} , u _ {3} )
 +
, X  ^ {23} ( u _ {2} , u _ {3} )]  = 0 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902051.png" /> is a function with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902052.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902053.png" /> is a Lie algebra. (To interpret (a7), imbed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902054.png" /> in its universal enveloping algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902055.png" />: the meaning of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902056.png" />, etc. is analogous to the case of equation (a2).) The classical Yang–Baxter equation has much to do with completely-integrable Hamiltonian systems (cf. [[Hamiltonian system|Hamiltonian system]]; [[Soliton|Soliton]]), cf. [[#References|[a12]]], and the results of [[#References|[a13]]] go some way to explaining why solutions to soliton equations typically involve principally elliptic, trigonometric and rational functions.
+
where $  X( u , v) $
 +
is a function with values in $  \mathfrak g \otimes \mathfrak g $,  
 +
where $  \mathfrak g $
 +
is a Lie algebra. (To interpret (a7), imbed $  \mathfrak g $
 +
in its universal enveloping algebra $  U \mathfrak g $:  
 +
the meaning of $  X  ^ {12} $,  
 +
etc. is analogous to the case of equation (a2).) The classical Yang–Baxter equation has much to do with completely-integrable Hamiltonian systems (cf. [[Hamiltonian system|Hamiltonian system]]; [[Soliton|Soliton]]), cf. [[#References|[a12]]], and the results of [[#References|[a13]]] go some way to explaining why solutions to soliton equations typically involve principally elliptic, trigonometric and rational functions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Jimbo (ed.) , ''Yang–Baxter equation in integrable systems'' , World Sci.  (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.B. Zamolodchikov,  Al.B. Zamolodchikov,  "Factorized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902057.png" />-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models"  ''Ann. Physics'' , '''120'''  (1979)  pp. 253–291  ((Reprinted in [A1], 82–120.))</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.J. Baxter,  "Solvable eight-vertex model on an arbitrary planar lattice"  ''Phil. Trans. Royal Soc. London'' , '''289'''  (1978)  pp. 315–346  ((Reprinted in [A1], 50–81.))</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.J. Baxter,  "Exactly solved models in statistical mechanics" , Acad. Press  (1982)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.B. McGuire,  "Study of exactly solvable one-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902058.png" />-body problems"  ''J. Math. Physics'' , '''5'''  (1964)  pp. 622–636</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  C.N. Yang,  "Some exact results for the many-body problem in one dimension with delta-function interaction"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1312–1314</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L. Onsager,  "Crystal lattices I. A two dimensional model with an order-disorder transition"  ''Phys. Rev.'' , '''65'''  (1944)  pp. 117–149</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.D. Faddeev,  "Integrable models in (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902059.png" />)-dimensional quantum field theory" , ''Lectures in Les Houches, 1982'' , '''Session 39''' , Elsevier  (1982)  pp. 563–608</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.N. Yang (ed.)  M.L. Ge (ed.) , ''Braid group, knot theory and statistical mechanics'' , World Sci.  (1989)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  M. Jimbo,  "Introduction to the Yang–Baxter equation"  M. Jimbo (ed.) , ''Yang–Baxter equation in integrable systems'' , World Sci.  (1990)  pp. 111–134</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  M. Hazewinkel,  "Introductory recommendations for the study of Hopf algebras in mathematics and physics"  ''CWI Quarterly'' , '''4'''  (1991)  pp. 3–26</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  M.A. Semenov-Tyan-Shanskii,  "What is a classical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902060.png" />-matrix"  ''Funct. Anal. Appl.'' , '''17'''  (1984)  pp. 259–272  ((Reprinted in [A1], 226–2242.))  ''Funkts. Anal. Prilozh.'' , '''17''' :  4  (1983)  pp. 17–33</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  A.A. Belavin,  V.G. Drinfel'd,  "Solutions of the classical Yang–Baxter equation for simple Lie algebras"  ''Funct. Anal. Appl.'' , '''16'''  (1983)  pp. 159–180  ((Reprinted in [A1], 200–221.))  ''Funkts. Anal. Prilozh.'' , '''16''' :  3  (1982)  pp. 1–29</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  V.V. Lyubashenko,  "Hopf algebras and vector symmetries"  ''Russ. Math. Surveys'' , '''41'''  (1986)  pp. 153–154  ''Uspekhi Mat. Nauk'' , '''41'''  (1986)  pp. 185–186</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhyan,  "Quantization of Lie groups and Lie algebras"  ''Algebra and Analysis'' , '''1'''  (1989)  pp. 178–206  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Jimbo (ed.) , ''Yang–Baxter equation in integrable systems'' , World Sci.  (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.B. Zamolodchikov,  Al.B. Zamolodchikov,  "Factorized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902057.png" />-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models"  ''Ann. Physics'' , '''120'''  (1979)  pp. 253–291  ((Reprinted in [A1], 82–120.))</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.J. Baxter,  "Solvable eight-vertex model on an arbitrary planar lattice"  ''Phil. Trans. Royal Soc. London'' , '''289'''  (1978)  pp. 315–346  ((Reprinted in [A1], 50–81.))</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.J. Baxter,  "Exactly solved models in statistical mechanics" , Acad. Press  (1982)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J.B. McGuire,  "Study of exactly solvable one-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902058.png" />-body problems"  ''J. Math. Physics'' , '''5'''  (1964)  pp. 622–636</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  C.N. Yang,  "Some exact results for the many-body problem in one dimension with delta-function interaction"  ''Phys. Rev. Lett.'' , '''19'''  (1967)  pp. 1312–1314</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L. Onsager,  "Crystal lattices I. A two dimensional model with an order-disorder transition"  ''Phys. Rev.'' , '''65'''  (1944)  pp. 117–149</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  L.D. Faddeev,  "Integrable models in (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902059.png" />)-dimensional quantum field theory" , ''Lectures in Les Houches, 1982'' , '''Session 39''' , Elsevier  (1982)  pp. 563–608</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  C.N. Yang (ed.)  M.L. Ge (ed.) , ''Braid group, knot theory and statistical mechanics'' , World Sci.  (1989)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  M. Jimbo,  "Introduction to the Yang–Baxter equation"  M. Jimbo (ed.) , ''Yang–Baxter equation in integrable systems'' , World Sci.  (1990)  pp. 111–134</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top">  M. Hazewinkel,  "Introductory recommendations for the study of Hopf algebras in mathematics and physics"  ''CWI Quarterly'' , '''4'''  (1991)  pp. 3–26</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top">  M.A. Semenov-Tyan-Shanskii,  "What is a classical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099020/y09902060.png" />-matrix"  ''Funct. Anal. Appl.'' , '''17'''  (1984)  pp. 259–272  ((Reprinted in [A1], 226–2242.))  ''Funkts. Anal. Prilozh.'' , '''17''' :  4  (1983)  pp. 17–33</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top">  A.A. Belavin,  V.G. Drinfel'd,  "Solutions of the classical Yang–Baxter equation for simple Lie algebras"  ''Funct. Anal. Appl.'' , '''16'''  (1983)  pp. 159–180  ((Reprinted in [A1], 200–221.))  ''Funkts. Anal. Prilozh.'' , '''16''' :  3  (1982)  pp. 1–29</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top">  V.V. Lyubashenko,  "Hopf algebras and vector symmetries"  ''Russ. Math. Surveys'' , '''41'''  (1986)  pp. 153–154  ''Uspekhi Mat. Nauk'' , '''41'''  (1986)  pp. 185–186</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top">  L.D. Faddeev,  N.Yu. Reshetikhin,  L.A. Takhtadzhyan,  "Quantization of Lie groups and Lie algebras"  ''Algebra and Analysis'' , '''1'''  (1989)  pp. 178–206  (In Russian)</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


Let $ R $ be an $ ( n ^ {2} \times n ^ {2} ) $- matrix with entries $ r _ {kl} ^ {ij} $. View $ R $ as an endomorphism of $ \mathbf C ^ {n} \otimes \mathbf C ^ {n} $ with basis $ e _ {i} \otimes e _ {j} $( $ i, j = 1 \dots n $), so that

$$ \tag{a1 } R( e _ {i} \otimes e _ {j} ) = \sum _ {a ,b } r _ {ij} ^ {ab} e _ {a} \otimes e _ {b} . $$

The constant Yang–Baxter equation, or quantum Yang–Baxter equation, for $ R $ is:

$$ \tag{a2 } R ^ {12} R ^ {13} R ^ {23} = R ^ {23} R ^ {13} R ^ {12} , $$

where $ R ^ {ij} $ is the endomorphism of $ \mathbf C ^ {n} \otimes \mathbf C ^ {n} \otimes \mathbf C ^ {n} $ acting like $ R $ on the two factors $ i, j $ and leaving the third factor alone. Thus, $ R ^ {12} = R \otimes \mathop{\rm id} $, $ R ^ {23} = \mathop{\rm id} \otimes R $ and

$$ \tag{a3 } R ^ {13} ( e _ {i} \otimes e _ {j} \otimes e _ {k} ) = \ \sum _ {a, b } r _ {ik} ^ {ab} e _ {a} \otimes e _ {j} \otimes e _ {b} . $$

An alternative form of the Yang–Baxter equation is:

$$ \tag{a4 } \widetilde{R} {} ^ {12} \widetilde{R} {} ^ {23} \widetilde{R} {} ^ {12} = \ \widetilde{R} {} ^ {23} \widetilde{R} {} ^ {12} \widetilde{R} {} ^ {23} . $$

$ R $ is a solution of (a2) if and only if $ \widetilde{R} = PR $ is a solution of (a4), where $ P $ is the $ ( n ^ {2} \times n ^ {2} ) $- matrix $ P = ( p _ {kl} ^ {ij} ) $, $ p _ {kl} ^ {ij} = \delta _ {il} \delta _ {jk} $, which switches the two factors of $ \mathbf C ^ {n} \otimes \mathbf C ^ {n} $.

The Yang–Baxter equation (a2) can be interpreted as a condition on the interaction of relativistic particles with internal state space $ \mathbf C ^ {n} $, [a2]. Let the interaction between two particles with rapidities $ \lambda , \mu $ be given by $ R ( \lambda , \mu ) : \mathbf C ^ {n} \otimes \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} \otimes \mathbf C ^ {n} $; then the Yang–Baxter equation

$$ \tag{a5 } R ^ {12} ( \lambda , \mu ) R ^ {13} ( \lambda , \nu ) R ^ {23} ( \mu , \nu ) = $$

$$ = \ R ^ {23} ( \mu , \nu ) R ^ {13} ( \lambda , \nu ) R ^ {12} ( \lambda , \mu ) $$

expresses the condition that the interaction between three particles is determined by the two particle interactions and is independent of which particles interact first. In this connection the Yang–Baxter equation is also called the factorization equation. It occurred first in [a5], [a6]. In lattice statistical mechanics there is another interpretation of the Yang–Baxter equation, [a3], [a4]. In this context it is also called the triangle equation or the star-triangle equation. Its sources go back to [a7].

If $ \widetilde{R} $ satisfies (a4), let $ \widetilde{R} {} _ {i} = \mathop{\rm id} \otimes \dots \otimes \mathop{\rm id} \otimes \widetilde{R} \otimes \mathop{\rm id} \otimes \dots \otimes \mathop{\rm id} $, where there are $ i- 1 $ factors $ \mathop{\rm id} $ before $ \widetilde{R} $ and $ n - i - 1 $ factors $ \mathop{\rm id} $ after $ \widetilde{R} $. Then $ \sigma _ {i} \mapsto \widetilde{R} {} _ {i} $ defines a representation of the braid group $ B _ {n} $, where $ \sigma _ {i} $ is the $ i $- th simple braid, cf. Braid theory. This is one main reason for the interconnection between knot and braid theory on the one hand and quantum field theory and statistical mechanics on the other, cf. e.g. [a9].

A generalization of the Yang–Baxter equation are the fundamental commutation relations

$$ \tag{a6 } R ( \lambda , \mu ) ( T ( \lambda ) \otimes T( \mu )) = \ ( T ( \mu ) \otimes T ( \lambda )) R( \lambda , \mu ) , $$

introduced by L.D. Faddeev, E.K. Sklyanin, L.A. Takhtazhyan as a basis for their quantum inverse scattering method, [a8]. In (a6), $ R ( \lambda , \mu ) $ is an $ ( n ^ {2} \times n ^ {2} ) $- matrix of scalars (as before; usually satisfying the Yang–Baxter equation) and $ T ( \lambda ) $ is an $ ( n \times n ) $- matrix of operators. Equation (a6) serves as a starting point for using an (algebraic) Bethe Ansatz for calculating eigenvalues and eigenvectors of the Hamiltonian operator $ t( \lambda ) = \mathop{\rm Tr} ( T ( \lambda )) $. Solutions of (a6) relate to families of representations of certain Hopf algebras, in particular (duals of) quasi-triangular Hopf algebras, cf. Quantum groups and [a14], [a15], [a11].

The classical Yang–Baxter equation is the semi-classical limit of (a2). It is

$$ \tag{a7 } [ X ^ {12} ( u _ {1} , u _ {2} ) , X ^ {13} ( u _ {1} , u _ {3} ) ] + $$

$$ + [ X ^ {12} ( u _ {1} , u _ {2} ), X ^ {23} ( u _ {2} , u _ {3} ) ]+ [ X ^ {13} ( u _ {1} , u _ {3} ) , X ^ {23} ( u _ {2} , u _ {3} )] = 0 , $$

where $ X( u , v) $ is a function with values in $ \mathfrak g \otimes \mathfrak g $, where $ \mathfrak g $ is a Lie algebra. (To interpret (a7), imbed $ \mathfrak g $ in its universal enveloping algebra $ U \mathfrak g $: the meaning of $ X ^ {12} $, etc. is analogous to the case of equation (a2).) The classical Yang–Baxter equation has much to do with completely-integrable Hamiltonian systems (cf. Hamiltonian system; Soliton), cf. [a12], and the results of [a13] go some way to explaining why solutions to soliton equations typically involve principally elliptic, trigonometric and rational functions.

References

[a1] M. Jimbo (ed.) , Yang–Baxter equation in integrable systems , World Sci. (1990)
[a2] A.B. Zamolodchikov, Al.B. Zamolodchikov, "Factorized -matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models" Ann. Physics , 120 (1979) pp. 253–291 ((Reprinted in [A1], 82–120.))
[a3] R.J. Baxter, "Solvable eight-vertex model on an arbitrary planar lattice" Phil. Trans. Royal Soc. London , 289 (1978) pp. 315–346 ((Reprinted in [A1], 50–81.))
[a4] R.J. Baxter, "Exactly solved models in statistical mechanics" , Acad. Press (1982)
[a5] J.B. McGuire, "Study of exactly solvable one-dimensional -body problems" J. Math. Physics , 5 (1964) pp. 622–636
[a6] C.N. Yang, "Some exact results for the many-body problem in one dimension with delta-function interaction" Phys. Rev. Lett. , 19 (1967) pp. 1312–1314
[a7] L. Onsager, "Crystal lattices I. A two dimensional model with an order-disorder transition" Phys. Rev. , 65 (1944) pp. 117–149
[a8] L.D. Faddeev, "Integrable models in ()-dimensional quantum field theory" , Lectures in Les Houches, 1982 , Session 39 , Elsevier (1982) pp. 563–608
[a9] C.N. Yang (ed.) M.L. Ge (ed.) , Braid group, knot theory and statistical mechanics , World Sci. (1989)
[a10] M. Jimbo, "Introduction to the Yang–Baxter equation" M. Jimbo (ed.) , Yang–Baxter equation in integrable systems , World Sci. (1990) pp. 111–134
[a11] M. Hazewinkel, "Introductory recommendations for the study of Hopf algebras in mathematics and physics" CWI Quarterly , 4 (1991) pp. 3–26
[a12] M.A. Semenov-Tyan-Shanskii, "What is a classical -matrix" Funct. Anal. Appl. , 17 (1984) pp. 259–272 ((Reprinted in [A1], 226–2242.)) Funkts. Anal. Prilozh. , 17 : 4 (1983) pp. 17–33
[a13] A.A. Belavin, V.G. Drinfel'd, "Solutions of the classical Yang–Baxter equation for simple Lie algebras" Funct. Anal. Appl. , 16 (1983) pp. 159–180 ((Reprinted in [A1], 200–221.)) Funkts. Anal. Prilozh. , 16 : 3 (1982) pp. 1–29
[a14] V.V. Lyubashenko, "Hopf algebras and vector symmetries" Russ. Math. Surveys , 41 (1986) pp. 153–154 Uspekhi Mat. Nauk , 41 (1986) pp. 185–186
[a15] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtadzhyan, "Quantization of Lie groups and Lie algebras" Algebra and Analysis , 1 (1989) pp. 178–206 (In Russian)
How to Cite This Entry:
Yang-Baxter equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Yang-Baxter_equation&oldid=15037