Difference between revisions of "Wiener chaos decomposition"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0978901.png | ||
+ | $#A+1 = 80 n = 0 | ||
+ | $#C+1 = 80 : ~/encyclopedia/old_files/data/W097/W.0907890 Wiener chaos decomposition | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ U $ | |
+ | be a dense subspace of a separable Hilbert space $ H $. | ||
+ | The triplet $ U \subset H \subset U ^ {*} $ | ||
+ | given by the injection $ i : U \rightarrow H $ | ||
+ | is obtained by identifying $ H $ | ||
+ | with its dual, taking the dual of $ i $, | ||
+ | and endowing $ U ^ {*} $, | ||
+ | the algebraic dual of $ U $, | ||
+ | with the weak topology. For any real $ \lambda $, | ||
+ | let $ \lambda H $ | ||
+ | be the Hilbert space obtained from $ H $ | ||
+ | by multiplying the norm on $ H $ | ||
+ | by $ \lambda $. | ||
− | + | The dual of the symmetric $ k $- | |
+ | fold tensor product $ S _ {k} ( U) $ | ||
+ | is the space $ \mathop{\rm Pol} _ {k} ( U) $ | ||
+ | of all homogeneous polynomials of degree $ k $ | ||
+ | on $ U $. | ||
+ | The value of $ F _ {k} \in \mathop{\rm Pol} _ {k} ( U) $ | ||
+ | at $ u \in U $ | ||
+ | is $ F _ {k} ( u ) = \langle F _ {k} , u ^ {\otimes k } \rangle _ {k! } $. | ||
+ | Thus, for each $ k $ | ||
+ | there is a triplet | ||
− | + | $$ \tag{a1 } | |
+ | S _ {k} ( U) \subset \sqrt k! S _ {k} ( H) \subset \mathop{\rm Pol} _ {k} ( U) . | ||
+ | $$ | ||
+ | |||
+ | Taking the direct sum of the internal space $ S _ {k} ( U) $ | ||
+ | and the Hilbert sum of the central spaces there results a triplet | ||
+ | |||
+ | $$ \tag{a2 } | ||
+ | S( U) \subset \mathop{\rm Fock} ( H) \subset \mathop\widehat{ {\rm Pol}} ( U), | ||
+ | $$ | ||
called dressed Fock space. The middle term is the usual [[Fock space|Fock space]] | called dressed Fock space. The middle term is the usual [[Fock space|Fock space]] | ||
− | + | $$ \tag{a3 } | |
+ | \mathop{\rm Fock} ( H) = \oplus \sqrt k! S _ {k} ( H) . | ||
+ | $$ | ||
− | The external space is the space | + | The external space is the space $ \prod _ {k} \mathop{\rm Pol} _ {k} ( U) $ |
+ | of all formal power series on $ U $. | ||
+ | The value $ F( u ) $ | ||
+ | at $ u \in U $ | ||
+ | of such an $ F \in \mathop\widehat{ {\rm Pol}} ( U) $ | ||
+ | is defined as $ \lim\limits _ \rightarrow \sum _ {k=} 1 ^ {N} F _ {k} ( u ) $, | ||
+ | if this limit exists. For example, for any $ F = \sum F _ {k} \in \mathop{\rm Fock} ( H) $ | ||
+ | one has | ||
− | + | $$ \tag{a4 } | |
+ | F( u ) = \langle F, e ^ {u} \rangle , | ||
+ | $$ | ||
− | where | + | where $ e ^ {u} = \sum ( k!) ^ {-} 1 u ^ {\otimes k } $. |
A probabilized vector space is a structure | A probabilized vector space is a structure | ||
− | + | $$ \tag{a5 } | |
+ | ( U \dots X \supset \Omega , {\mathsf P} ) | ||
+ | $$ | ||
− | where | + | where $ U $ |
+ | and $ X $ | ||
+ | are two spaces in duality and $ X = \mathop{\rm span} ( \Omega ) $ | ||
+ | is linearly generated by the subset $ \Omega $ | ||
+ | of $ X $. | ||
+ | This subset is endowed with a Polish (or Suslin) topology such that any $ u \in U $ | ||
+ | defines a Borel function $ u( \omega ) = \langle u , \omega \rangle $ | ||
+ | on $ \Omega $. | ||
+ | The space $ U $ | ||
+ | contains a countable subset separating the points of $ \Omega $( | ||
+ | so that the Borel $ \sigma $- | ||
+ | field is generated by $ U $). | ||
+ | Finally, $ {\mathsf P} $ | ||
+ | is a probability measure on this $ \sigma $- | ||
+ | field. | ||
− | Assume, moreover, that the space of cylindrical polynomials | + | Assume, moreover, that the space of cylindrical polynomials $ P( \Omega ) = \mathop{\rm span} ( u ( \omega ) ^ {k} : u \in U, k = 0, 1, 2 , . . . ) $ |
+ | is dense in $ L _ {2} ( \Omega ) $. | ||
+ | Assume that the following bilinear form on $ U $ | ||
+ | is a scalar product: | ||
− | + | $$ \tag{a6 } | |
+ | b( u , v) = {\mathsf E} ( [ u ( \omega )- {\mathsf E} ( u ( \omega ))] | ||
+ | [ v( \omega ) - {\mathsf E} ( v( \omega ))]) , | ||
+ | $$ | ||
− | and let | + | and let $ H $ |
+ | be the completion of $ U $. | ||
+ | For any $ k > 0 $, | ||
+ | let $ \pi _ {k} $ | ||
+ | denote the orthogonal projection of $ L _ {2} ( \Omega ) $ | ||
+ | with range $ \overline{ {P _ {<} k ( \Omega ) }}\; $, | ||
+ | the closure of $ \mathop{\rm span} ( u ( \omega ) ^ {j} : u \in U, j< k ) $. | ||
+ | Let $ KO _ {k} $ | ||
+ | be the orthogonal complement of $ \overline{ {P _ {<} k ( \Omega ) }}\; $ | ||
+ | in $ \overline{ {P _ \leq k ( \Omega ) }}\; $. | ||
+ | This space is called the $ k $- | ||
+ | th homogeneous chaos. The space $ L _ {2} ( \Omega ) $ | ||
+ | is the Hilbert direct sum of the $ KO _ {k} $. | ||
+ | One says that $ L _ {2} ( \Omega ) $ | ||
+ | admits a decomposition in chaos if for any $ k $ | ||
+ | the following mapping is isometric: | ||
− | + | $$ | |
+ | \sqrt k! S _ {k} ( H) \supset S _ {k} ( U) \ni \ | ||
+ | Q \mapsto ^ { {I _ k} } Q - \pi _ {k} ( Q) \in \ | ||
+ | KO _ {k} \subset L _ {2} ( \Omega ) . | ||
+ | $$ | ||
− | The collection of these isometries for | + | The collection of these isometries for $ k = 0, 1 \dots $ |
+ | is an isometry $ I $ | ||
+ | whose inverse | ||
− | + | $$ \tag{a7 } | |
+ | L _ {2} ( \Omega ) \rightarrow ^ { {I ^ {-}} 1 } \mathop{\rm Fock} ( H) ,\ \ | ||
+ | f \rightarrow \widehat{f} , | ||
+ | $$ | ||
− | extended to distributions on | + | extended to distributions on $ \Omega $, |
+ | is the starting point of distribution calculus on $ \Omega $. | ||
+ | Because of (a4), $ \widehat{f} $ | ||
+ | is explicitly given by | ||
− | + | $$ \tag{a8 } | |
+ | \widehat{f} ( u ) = \langle \widehat{f} , e ^ {u} \rangle = {\mathsf E} [ f \epsilon ^ {u} ] , | ||
+ | $$ | ||
− | where | + | where $ \epsilon ^ {u} = I ^ {-} 1 ( e ^ {u} ) $. |
− | Decomposition in chaos was discovered by N. Wiener (in the case | + | Decomposition in chaos was discovered by N. Wiener (in the case $ \Omega $ |
+ | is Wiener space), [[#References|[a1]]]. Further contributions are due to Th.A. Dwyer and I. Segal ([[#References|[a2]]], [[#References|[a3]]]) and these have been important for constructive quantum field theory. K. Itô obtained a decomposition into chaos for Poisson probability spaces and interpreted $ I _ {k} ( f ) $ | ||
+ | as iterated stochastic integrals. For formula (a8), extended to distributions for Gaussian probability spaces, cf. [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a9]]], [[#References|[a10]]]. There are links with Malliavin calculus, [[#References|[a8]]]. | ||
For more material cf. e.g. also [[#References|[a11]]], [[#References|[a12]]]; [[Wick product|Wick product]] and [[White noise analysis|White noise analysis]], and the references therein. | For more material cf. e.g. also [[#References|[a11]]], [[#References|[a12]]]; [[Wick product|Wick product]] and [[White noise analysis|White noise analysis]], and the references therein. |
Revision as of 08:29, 6 June 2020
Let $ U $
be a dense subspace of a separable Hilbert space $ H $.
The triplet $ U \subset H \subset U ^ {*} $
given by the injection $ i : U \rightarrow H $
is obtained by identifying $ H $
with its dual, taking the dual of $ i $,
and endowing $ U ^ {*} $,
the algebraic dual of $ U $,
with the weak topology. For any real $ \lambda $,
let $ \lambda H $
be the Hilbert space obtained from $ H $
by multiplying the norm on $ H $
by $ \lambda $.
The dual of the symmetric $ k $- fold tensor product $ S _ {k} ( U) $ is the space $ \mathop{\rm Pol} _ {k} ( U) $ of all homogeneous polynomials of degree $ k $ on $ U $. The value of $ F _ {k} \in \mathop{\rm Pol} _ {k} ( U) $ at $ u \in U $ is $ F _ {k} ( u ) = \langle F _ {k} , u ^ {\otimes k } \rangle _ {k! } $. Thus, for each $ k $ there is a triplet
$$ \tag{a1 } S _ {k} ( U) \subset \sqrt k! S _ {k} ( H) \subset \mathop{\rm Pol} _ {k} ( U) . $$
Taking the direct sum of the internal space $ S _ {k} ( U) $ and the Hilbert sum of the central spaces there results a triplet
$$ \tag{a2 } S( U) \subset \mathop{\rm Fock} ( H) \subset \mathop\widehat{ {\rm Pol}} ( U), $$
called dressed Fock space. The middle term is the usual Fock space
$$ \tag{a3 } \mathop{\rm Fock} ( H) = \oplus \sqrt k! S _ {k} ( H) . $$
The external space is the space $ \prod _ {k} \mathop{\rm Pol} _ {k} ( U) $ of all formal power series on $ U $. The value $ F( u ) $ at $ u \in U $ of such an $ F \in \mathop\widehat{ {\rm Pol}} ( U) $ is defined as $ \lim\limits _ \rightarrow \sum _ {k=} 1 ^ {N} F _ {k} ( u ) $, if this limit exists. For example, for any $ F = \sum F _ {k} \in \mathop{\rm Fock} ( H) $ one has
$$ \tag{a4 } F( u ) = \langle F, e ^ {u} \rangle , $$
where $ e ^ {u} = \sum ( k!) ^ {-} 1 u ^ {\otimes k } $.
A probabilized vector space is a structure
$$ \tag{a5 } ( U \dots X \supset \Omega , {\mathsf P} ) $$
where $ U $ and $ X $ are two spaces in duality and $ X = \mathop{\rm span} ( \Omega ) $ is linearly generated by the subset $ \Omega $ of $ X $. This subset is endowed with a Polish (or Suslin) topology such that any $ u \in U $ defines a Borel function $ u( \omega ) = \langle u , \omega \rangle $ on $ \Omega $. The space $ U $ contains a countable subset separating the points of $ \Omega $( so that the Borel $ \sigma $- field is generated by $ U $). Finally, $ {\mathsf P} $ is a probability measure on this $ \sigma $- field.
Assume, moreover, that the space of cylindrical polynomials $ P( \Omega ) = \mathop{\rm span} ( u ( \omega ) ^ {k} : u \in U, k = 0, 1, 2 , . . . ) $ is dense in $ L _ {2} ( \Omega ) $. Assume that the following bilinear form on $ U $ is a scalar product:
$$ \tag{a6 } b( u , v) = {\mathsf E} ( [ u ( \omega )- {\mathsf E} ( u ( \omega ))] [ v( \omega ) - {\mathsf E} ( v( \omega ))]) , $$
and let $ H $ be the completion of $ U $. For any $ k > 0 $, let $ \pi _ {k} $ denote the orthogonal projection of $ L _ {2} ( \Omega ) $ with range $ \overline{ {P _ {<} k ( \Omega ) }}\; $, the closure of $ \mathop{\rm span} ( u ( \omega ) ^ {j} : u \in U, j< k ) $. Let $ KO _ {k} $ be the orthogonal complement of $ \overline{ {P _ {<} k ( \Omega ) }}\; $ in $ \overline{ {P _ \leq k ( \Omega ) }}\; $. This space is called the $ k $- th homogeneous chaos. The space $ L _ {2} ( \Omega ) $ is the Hilbert direct sum of the $ KO _ {k} $. One says that $ L _ {2} ( \Omega ) $ admits a decomposition in chaos if for any $ k $ the following mapping is isometric:
$$ \sqrt k! S _ {k} ( H) \supset S _ {k} ( U) \ni \ Q \mapsto ^ { {I _ k} } Q - \pi _ {k} ( Q) \in \ KO _ {k} \subset L _ {2} ( \Omega ) . $$
The collection of these isometries for $ k = 0, 1 \dots $ is an isometry $ I $ whose inverse
$$ \tag{a7 } L _ {2} ( \Omega ) \rightarrow ^ { {I ^ {-}} 1 } \mathop{\rm Fock} ( H) ,\ \ f \rightarrow \widehat{f} , $$
extended to distributions on $ \Omega $, is the starting point of distribution calculus on $ \Omega $. Because of (a4), $ \widehat{f} $ is explicitly given by
$$ \tag{a8 } \widehat{f} ( u ) = \langle \widehat{f} , e ^ {u} \rangle = {\mathsf E} [ f \epsilon ^ {u} ] , $$
where $ \epsilon ^ {u} = I ^ {-} 1 ( e ^ {u} ) $.
Decomposition in chaos was discovered by N. Wiener (in the case $ \Omega $ is Wiener space), [a1]. Further contributions are due to Th.A. Dwyer and I. Segal ([a2], [a3]) and these have been important for constructive quantum field theory. K. Itô obtained a decomposition into chaos for Poisson probability spaces and interpreted $ I _ {k} ( f ) $ as iterated stochastic integrals. For formula (a8), extended to distributions for Gaussian probability spaces, cf. [a5], [a6], [a7], [a9], [a10]. There are links with Malliavin calculus, [a8].
For more material cf. e.g. also [a11], [a12]; Wick product and White noise analysis, and the references therein.
References
[a1] | N. Wiener, "The homogeneous chaos" Amer. J. Math. , 60 (1938) pp. 897–936 |
[a2] | Th.A., III Dwyer, "Partial differential equations in Fischer–Fock spaces for the Hilbert–Schmidt holomorphy type" Bull. Amer. Math. Soc. , 77 (1971) pp. 725–730 |
[a3] | I. Segal, "Tensor algebras over Hilbert spaces, I" Trans. Amer. Math. Soc. , 81 (1956) pp. 106–134 |
[a4] | K. Itô, "Multiple Wiener integral" J. Math. Soc. Japan (1951) pp. 157–169 |
[a5] | P. Krée, "Solutions faibles d'equations aux dérivées fonctionelles II" , Sem. P. Lelong 1973/1974 , Lect. notes in math. , 474 , Springer (1974) pp. 16–47 |
[a6] | P. Krée, R. Raczka, "Kernels and symbols of operators in quantum field theory" Ann. Inst. H. Poincaré (1978) |
[a7] | B. Lascar, "Propriétés locales des espaces de type Sobolev en dimension infinie" Comm. Partial Diff. Eq. , 1 : 6 (1976) pp. 561–584 |
[a8] | D. Ocone, "Malliavin calculus and stochastic integral representation of functionals of diffusion processes" Stochastics , 12 (1984) pp. 161–185 |
[a9] | M. Krée, "Propriété de trace en dimension infinie d'espaces du type Sobolev" C.R Acad. Sci. Paris , 279 (1974) pp. 157–160 |
[a10] | M. Krée, "Propriété de trace en dimension infinie d'espaces de type Sobolev" Bull. Soc. Math. de France , 105 (1977) pp. 141–163 |
[a11] | G. Kallianpur, "The role of reproducing kernel Hilbert spaces in the study of Gaussian processes" P. Ney (ed.) , Advances in probability and related topics , 2 , M. Dekker (1970) pp. 49–84 |
[a12] | J. Neveu, "Processus aléatoires Gaussiens" , Univ. Montréal (1968) |
Wiener chaos decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener_chaos_decomposition&oldid=14192