Difference between revisions of "Weil domain"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0976101.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/W097/W.0907610 Weil domain | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A special case of an [[Analytic polyhedron|analytic polyhedron]]. A bounded domain $ D $ | |
+ | in $ n $- | ||
+ | dimensional space $ \mathbf C ^ {n} $ | ||
+ | is said to be a Weil domain if there exist $ N \geq n $ | ||
+ | functions $ f _ {i} ( z) $, | ||
+ | $ i= 1 \dots N $, | ||
+ | holomorphic in a fixed neighbourhood $ U ( \overline{D}\; ) $ | ||
+ | of the closure $ \overline{D}\; $, | ||
+ | such that | ||
− | + | 1) $ D= \{ {z } : {| f _ {i} ( z) | < 1, i = 1 \dots N, z \in U ( \overline{D}\; ) } \} $; | |
− | + | 2) the faces of the Weil domain $ D $, | |
+ | i.e. the sets | ||
− | + | $$ | |
+ | \sigma _ {i} = \{ {z \in D } : { | ||
+ | | f _ {i} ( z) | = 1 ,\ | ||
+ | | f _ {j} ( z) | \leq 1 ,\ | ||
+ | j \neq i } \} | ||
+ | , | ||
+ | $$ | ||
− | The totality of all | + | have dimension $ 2n - 1 $; |
+ | |||
+ | 3) the edges of the Weil domain $ D $, | ||
+ | i.e. the intersections of any $ k $( | ||
+ | $ 2 \leq k \leq n $) | ||
+ | different faces, have dimension $ \leq 2n - k $. | ||
+ | |||
+ | The totality of all $ n $- | ||
+ | dimensional edges of a Weil domain is called the skeleton of the domain. The [[Bergman–Weil representation|Bergman–Weil representation]] applies to Weil domains. These domains are named for A. Weil [[#References|[1]]], who obtained the first important results for these domains. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" ''Math. Ann.'' , '''111''' (1935) pp. 178–182</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" ''Math. Ann.'' , '''111''' (1935) pp. 178–182</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. Fuks, "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc. (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. Fuks, "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc. (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984)</TD></TR></table> |
Latest revision as of 08:29, 6 June 2020
A special case of an analytic polyhedron. A bounded domain $ D $
in $ n $-
dimensional space $ \mathbf C ^ {n} $
is said to be a Weil domain if there exist $ N \geq n $
functions $ f _ {i} ( z) $,
$ i= 1 \dots N $,
holomorphic in a fixed neighbourhood $ U ( \overline{D}\; ) $
of the closure $ \overline{D}\; $,
such that
1) $ D= \{ {z } : {| f _ {i} ( z) | < 1, i = 1 \dots N, z \in U ( \overline{D}\; ) } \} $;
2) the faces of the Weil domain $ D $, i.e. the sets
$$ \sigma _ {i} = \{ {z \in D } : { | f _ {i} ( z) | = 1 ,\ | f _ {j} ( z) | \leq 1 ,\ j \neq i } \} , $$
have dimension $ 2n - 1 $;
3) the edges of the Weil domain $ D $, i.e. the intersections of any $ k $( $ 2 \leq k \leq n $) different faces, have dimension $ \leq 2n - k $.
The totality of all $ n $- dimensional edges of a Weil domain is called the skeleton of the domain. The Bergman–Weil representation applies to Weil domains. These domains are named for A. Weil [1], who obtained the first important results for these domains.
References
[1] | A. Weil, "L'intégrale de Cauchy et les fonctions de plusieurs variables" Math. Ann. , 111 (1935) pp. 178–182 |
[2] | B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian) |
[3] | V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian) |
Comments
References
[a1] | B.A. Fuks, "Introduction to the theory of analytic functions of several complex variables" , Amer. Math. Soc. (1963) (Translated from Russian) |
[a2] | G.M. [G.M. Khenkin] Henkin, J. Leiterer, "Theory of functions on complex manifolds" , Birkhäuser (1984) |
Weil domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weil_domain&oldid=15119