Difference between revisions of "Watson lemma"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0971101.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/W097/W.0907110 Watson lemma | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A result linking the asymptotic behaviour of a function near $ 0 $ | |
+ | with the asymptotic behaviour of its [[Laplace transform|Laplace transform]] near $ \infty $. | ||
+ | Let $ f( t) $ | ||
+ | have the asymptotic expansion | ||
− | + | $$ | |
+ | f( t) \sim \sum _ { n= } 1 ^ \infty a _ {n} t ^ {\lambda _ {n} } , | ||
+ | \ t \rightarrow 0, | ||
+ | $$ | ||
− | + | $ - 1 < \mathop{\rm Re} ( \lambda _ {1} ) < \mathop{\rm Re} ( \lambda _ {2} ) < \dots $, | |
+ | and let $ F $ | ||
+ | be the Laplace transform of $ f $, | ||
− | + | $$ | |
+ | F( p) = \int\limits _ { 0 } ^ \infty e ^ {- pt } f( t) dt . | ||
+ | $$ | ||
− | + | Then $ F $ | |
+ | has a corresponding asymptotic expansion | ||
+ | |||
+ | $$ | ||
+ | F( p) \sim \sum _ { n= } 1 ^ \infty | ||
+ | |||
+ | \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } | ||
+ | ,\ \ | ||
+ | | p | \rightarrow \infty , | ||
+ | $$ | ||
+ | |||
+ | $ - \pi / 2 < \mathop{\rm arg} ( p) < \pi / 2 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3</TD></TR></table> |
Revision as of 08:28, 6 June 2020
A result linking the asymptotic behaviour of a function near $ 0 $
with the asymptotic behaviour of its Laplace transform near $ \infty $.
Let $ f( t) $
have the asymptotic expansion
$$ f( t) \sim \sum _ { n= } 1 ^ \infty a _ {n} t ^ {\lambda _ {n} } , \ t \rightarrow 0, $$
$ - 1 < \mathop{\rm Re} ( \lambda _ {1} ) < \mathop{\rm Re} ( \lambda _ {2} ) < \dots $, and let $ F $ be the Laplace transform of $ f $,
$$ F( p) = \int\limits _ { 0 } ^ \infty e ^ {- pt } f( t) dt . $$
Then $ F $ has a corresponding asymptotic expansion
$$ F( p) \sim \sum _ { n= } 1 ^ \infty \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } ,\ \ | p | \rightarrow \infty , $$
$ - \pi / 2 < \mathop{\rm arg} ( p) < \pi / 2 $.
References
[a1] | B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3 |
Watson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Watson_lemma&oldid=16130