Difference between revisions of "Wallis formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | w0970401.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/W097/W.0907040 Wallis formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A formula which expresses the number $ \pi /2 $ | |
+ | as an [[Infinite product|infinite product]]: | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | { | ||
+ | \frac \pi {2} | ||
+ | } = \ | ||
+ | \left ( { | ||
+ | \frac{2}{1} | ||
+ | } \cdot { | ||
+ | \frac{2}{3} | ||
+ | } \right ) \left ( { | ||
+ | \frac{4}{3} | ||
+ | } \cdot | ||
+ | { | ||
+ | \frac{4}{5} | ||
+ | } \right ) \dots \left ( { | ||
+ | \frac{2k}{2k-} | ||
+ | 1 } \cdot | ||
+ | { | ||
+ | \frac{2k}{2k+} | ||
+ | 1 } \right ) \dots = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \lim\limits _ {m \rightarrow \infty } \prod _ { k= } 1 ^ { m } | ||
+ | \frac{( 2k) ^ {2} }{( 2k- 1)( 2k+ 1) } | ||
+ | . | ||
+ | $$ | ||
There exist other variants of this formula, e.g.: | There exist other variants of this formula, e.g.: | ||
− | + | $$ \tag{2 } | |
+ | \sqrt \pi = \ | ||
+ | \lim\limits _ {m \rightarrow \infty } \ | ||
+ | |||
+ | \frac{( m!) ^ {2} \cdot 2 ^ {2m} }{( 2m)! \sqrt m } | ||
+ | . | ||
+ | $$ | ||
Formula (1) was first employed by J. Wallis [[#References|[1]]] in his calculation of the area of a disc; it is one of the earliest examples of an infinite product. | Formula (1) was first employed by J. Wallis [[#References|[1]]] in his calculation of the area of a disc; it is one of the earliest examples of an infinite product. | ||
Line 13: | Line 56: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Wallis, "Arithmetica infinitorum" , Oxford (1656)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Wallis, "Arithmetica infinitorum" , Oxford (1656)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Formula (1) is a direct consequence of Euler's product formula | Formula (1) is a direct consequence of Euler's product formula | ||
− | + | $$ | |
+ | \sin z = z \prod _ { n= } 1 ^ \infty \left ( 1 - | ||
+ | \frac{z ^ {2} }{n ^ {2} | ||
+ | \pi ^ {2} } | ||
+ | \right ) | ||
+ | $$ | ||
+ | |||
+ | with $ \pi /2 $. | ||
− | + | It can also be obtained by expressing $ \int _ {0} ^ {\pi /2 } \sin ^ {2m} x dx $ | |
+ | and $ \int _ {0} ^ {\pi /2 } \sin ^ {2m+} 1 x dx $ | ||
+ | in terms of $ m $, | ||
+ | and by showing that | ||
− | + | $$ | |
− | + | \frac{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m} x dx }{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m+} 1 x dx } | |
+ | \rightarrow 1 \ ( m\rightarrow \infty ). | ||
+ | $$ | ||
− | Formula (2) can be derived from (1) by multiplying the numerator and the denominator of | + | Formula (2) can be derived from (1) by multiplying the numerator and the denominator of $ \prod _ {k=} 1 ^ {m} ( 2k) ^ {2} / ( 2k- 1)( 2k+ 1) $ |
+ | by $ 2 ^ {2} \cdot 4 ^ {2} \dots ( 2m) ^ {2} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''2''' , Blaisdell (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.H. Edwards jr., "The historical development of the calculus" , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , '''1''' , Springer (1976)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.J. Struik (ed.) , ''A source book in mathematics: 1200–1800'' , Harvard Univ. Press (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''2''' , Blaisdell (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.H. Edwards jr., "The historical development of the calculus" , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , '''1''' , Springer (1976)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.J. Struik (ed.) , ''A source book in mathematics: 1200–1800'' , Harvard Univ. Press (1986)</TD></TR></table> |
Revision as of 08:28, 6 June 2020
A formula which expresses the number $ \pi /2 $
as an infinite product:
$$ \tag{1 } { \frac \pi {2} } = \ \left ( { \frac{2}{1} } \cdot { \frac{2}{3} } \right ) \left ( { \frac{4}{3} } \cdot { \frac{4}{5} } \right ) \dots \left ( { \frac{2k}{2k-} 1 } \cdot { \frac{2k}{2k+} 1 } \right ) \dots = $$
$$ = \ \lim\limits _ {m \rightarrow \infty } \prod _ { k= } 1 ^ { m } \frac{( 2k) ^ {2} }{( 2k- 1)( 2k+ 1) } . $$
There exist other variants of this formula, e.g.:
$$ \tag{2 } \sqrt \pi = \ \lim\limits _ {m \rightarrow \infty } \ \frac{( m!) ^ {2} \cdot 2 ^ {2m} }{( 2m)! \sqrt m } . $$
Formula (1) was first employed by J. Wallis [1] in his calculation of the area of a disc; it is one of the earliest examples of an infinite product.
References
[1] | J. Wallis, "Arithmetica infinitorum" , Oxford (1656) |
Comments
Formula (1) is a direct consequence of Euler's product formula
$$ \sin z = z \prod _ { n= } 1 ^ \infty \left ( 1 - \frac{z ^ {2} }{n ^ {2} \pi ^ {2} } \right ) $$
with $ \pi /2 $.
It can also be obtained by expressing $ \int _ {0} ^ {\pi /2 } \sin ^ {2m} x dx $ and $ \int _ {0} ^ {\pi /2 } \sin ^ {2m+} 1 x dx $ in terms of $ m $, and by showing that
$$ \frac{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m} x dx }{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m+} 1 x dx } \rightarrow 1 \ ( m\rightarrow \infty ). $$
Formula (2) can be derived from (1) by multiplying the numerator and the denominator of $ \prod _ {k=} 1 ^ {m} ( 2k) ^ {2} / ( 2k- 1)( 2k+ 1) $ by $ 2 ^ {2} \cdot 4 ^ {2} \dots ( 2m) ^ {2} $.
References
[a1] | T.M. Apostol, "Calculus" , 2 , Blaisdell (1964) |
[a2] | C.H. Edwards jr., "The historical development of the calculus" , Springer (1979) |
[a3] | P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , 1 , Springer (1976) |
[a4] | D.J. Struik (ed.) , A source book in mathematics: 1200–1800 , Harvard Univ. Press (1986) |
Wallis formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wallis_formula&oldid=13195