Difference between revisions of "Virial decomposition"
|  (Importing text file) | Ulf Rehmann (talk | contribs)  m (tex encoded by computer) | ||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | v0967201.png | ||
| + | $#A+1 = 29 n = 0 | ||
| + | $#C+1 = 29 : ~/encyclopedia/old_files/data/V096/V.0906720 Virial decomposition, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
| ''virial series'' | ''virial series'' | ||
| The series on the right-hand side of the equation of state of a gas: | The series on the right-hand side of the equation of state of a gas: | ||
| − | + | $$  | |
| + | |||
| + | \frac{Pv }{kT } | ||
| + |   = \  | ||
| + | 1 + \sum _ {1 \leq  i \leq  \infty } | ||
| + | |||
| + | \frac{B _ {i + 1 }  ( T) }{v  ^ {i} } | ||
| + |  , | ||
| + | $$ | ||
| + | |||
| + | where  $  P $ | ||
| + | is the pressure,  $  T $ | ||
| + | is the temperature,  $  v $ | ||
| + | is the specific volume, and  $  k $ | ||
| + | is the Boltzmann constant. The term of the series which contains the  $  k $- | ||
| + | th virial coefficient  $  B _ {k} $ | ||
| + | describes the deviation of the gas from ideal behaviour due to the interaction in groups of  $  k $ | ||
| + | molecules.  $  B _ {k} $ | ||
| + | can be expressed in terms of irreducible repeated integrals  $  b _ {k} $: | ||
| + | |||
| + | $$  | ||
| + | B _ {k}  =  { | ||
| + | \frac{k - 1 }{k} | ||
| + |  } \sum | ||
| + | |||
| + | \frac{( k - 2 + \sum n _ {j} ) ! }{( k - 1) ! } | ||
| − | + | (- 1) ^ {\sum n _ {j} } | |
| + | \prod _ { j } | ||
| − | + | \frac{( jb _ {j} ) ^ {n _ {j} } }{n _ {j} ! } | |
| + |  , | ||
| + | $$ | ||
| − | summed over all natural numbers  | + | summed over all natural numbers  $  n _ {j} $,   | 
| + | $  j \geq  2 $,   | ||
| + | subject to the condition | ||
| − | + | $$  | |
| + | \sum _ {2 \leq  j \leq  k } | ||
| + | ( j - 1) n _ {j}  =  k - 1. | ||
| + | $$ | ||
| In particular, | In particular, | ||
| − | + | $$  | |
| + | B _ {2}  =  - b _ {2} , | ||
| + | \  B _ {3}  =  4b _ {2}  ^ {2} - 2b _ {3} ; | ||
| + | $$ | ||
| − | + | $$  | |
| + | b _ {2}  =   | ||
| + | \frac{1}{2 ! V } | ||
| + |  \int\limits \int\limits f _ {12}  d  ^ {3} q _ {1}  d  ^ {3} q _ {2} , | ||
| + | $$ | ||
| − | + | $$  | |
| + | b _ {3}  =   | ||
| + | \frac{1}{3 ! V } | ||
| + |  \times | ||
| + | $$ | ||
| − | + | $$  | |
| + | \times  | ||
| + | \int\limits \int\limits \int\limits ( f _ {31} f _ {21} + f _ {32} f _ {31} + f _ {32} f _ {21} + | ||
| + | f _ {21} f _ {32} f _ {31} ) \  | ||
| + | $$ | ||
| − | + | $$  | |
| + | |||
| + | d  ^ {3} q _ {1}  d  ^ {3} q _ {2}  d  ^ {3} q _ {3} , | ||
| + | $$ | ||
| where | where | ||
| − | + | $$  | |
| + | f _ {ij}  =   \mathop{\rm exp} | ||
| + | \left [ -  | ||
| + | \frac{\Phi ( | q _ {i} - q _ {j} | ) }{kT } | ||
| + |  \right ] - 1, | ||
| + | $$ | ||
| − | + | $  V $ | |
| + | is the volume of the gas, the integration extends over the total volume occupied by the gas, and  $  \Phi $ | ||
| + | is the interaction potential. There is a rule for writing down  $  b _ {j} $ | ||
| + | for any  $  j $ | ||
| + | in terms of  $  f _ {ij} $.   | ||
| + | The expression obtained after simplification is: | ||
| − | + | $$  | |
| + | B _ {3}  =  - { | ||
| + | \frac{1}{3} | ||
| + |  } | ||
| + | \int\limits \int\limits f _ {12} f _ {13} f _ {23}  d  ^ {3} q _ {1}  d  ^ {3} q _ {2} . | ||
| + | $$ | ||
| In practice, only the first few virial coefficients can be calculated. | In practice, only the first few virial coefficients can be calculated. | ||
| − | Power series in  | + | Power series in  $  v  ^ {-} 1 $,   | 
| + | with coefficients expressed in terms of  $  b _ {j} $,   | ||
| + | can be used to represent equilibrium correlation functions for  $  s $ | ||
| + | particles; a corollary of this fact is that the equation of state can be obtained in a simple manner [[#References|[3]]]. | ||
| There exists a quantum-mechanical analogue of the virial decomposition. | There exists a quantum-mechanical analogue of the virial decomposition. | ||
Latest revision as of 08:28, 6 June 2020
virial series
The series on the right-hand side of the equation of state of a gas:
$$ \frac{Pv }{kT } = \ 1 + \sum _ {1 \leq i \leq \infty } \frac{B _ {i + 1 } ( T) }{v ^ {i} } , $$
where $ P $ is the pressure, $ T $ is the temperature, $ v $ is the specific volume, and $ k $ is the Boltzmann constant. The term of the series which contains the $ k $- th virial coefficient $ B _ {k} $ describes the deviation of the gas from ideal behaviour due to the interaction in groups of $ k $ molecules. $ B _ {k} $ can be expressed in terms of irreducible repeated integrals $ b _ {k} $:
$$ B _ {k} = { \frac{k - 1 }{k} } \sum \frac{( k - 2 + \sum n _ {j} ) ! }{( k - 1) ! } (- 1) ^ {\sum n _ {j} } \prod _ { j } \frac{( jb _ {j} ) ^ {n _ {j} } }{n _ {j} ! } , $$
summed over all natural numbers $ n _ {j} $, $ j \geq 2 $, subject to the condition
$$ \sum _ {2 \leq j \leq k } ( j - 1) n _ {j} = k - 1. $$
In particular,
$$ B _ {2} = - b _ {2} , \ B _ {3} = 4b _ {2} ^ {2} - 2b _ {3} ; $$
$$ b _ {2} = \frac{1}{2 ! V } \int\limits \int\limits f _ {12} d ^ {3} q _ {1} d ^ {3} q _ {2} , $$
$$ b _ {3} = \frac{1}{3 ! V } \times $$
$$ \times \int\limits \int\limits \int\limits ( f _ {31} f _ {21} + f _ {32} f _ {31} + f _ {32} f _ {21} + f _ {21} f _ {32} f _ {31} ) \ $$
$$ d ^ {3} q _ {1} d ^ {3} q _ {2} d ^ {3} q _ {3} , $$
where
$$ f _ {ij} = \mathop{\rm exp} \left [ - \frac{\Phi ( | q _ {i} - q _ {j} | ) }{kT } \right ] - 1, $$
$ V $ is the volume of the gas, the integration extends over the total volume occupied by the gas, and $ \Phi $ is the interaction potential. There is a rule for writing down $ b _ {j} $ for any $ j $ in terms of $ f _ {ij} $. The expression obtained after simplification is:
$$ B _ {3} = - { \frac{1}{3} } \int\limits \int\limits f _ {12} f _ {13} f _ {23} d ^ {3} q _ {1} d ^ {3} q _ {2} . $$
In practice, only the first few virial coefficients can be calculated.
Power series in $ v ^ {-} 1 $, with coefficients expressed in terms of $ b _ {j} $, can be used to represent equilibrium correlation functions for $ s $ particles; a corollary of this fact is that the equation of state can be obtained in a simple manner [3].
There exists a quantum-mechanical analogue of the virial decomposition.
References
| [1] | J.E. Mayer, M. Goeppert-Mayer, "Statistical mechanics" , Wiley (1940) | 
| [2] | R. Feynman, "Statistical mechanics" , M.I.T. (1972) | 
| [3] | N.N. Bogolyubov, "Problems of a dynamical theory in statistical physics" , North-Holland (1962) (Translated from Russian) | 
| [4] | G.E. Uhlenbeck, G.V. Ford, "Lectures in statistical mechanics" , Amer. Math. Soc. (1963) | 
Virial decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Virial_decomposition&oldid=16492