Namespaces
Variants
Actions

Difference between revisions of "Vietoris homology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
v0966401.png
 +
$#A+1 = 93 n = 0
 +
$#C+1 = 93 : ~/encyclopedia/old_files/data/V096/V.0906640 Vietoris homology
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the first homology theories (cf. [[Homology theory|Homology theory]]) defined for the non-polyhedral case. It was first considered by L.E.J. Brouwer in 1911 (for the case of the plane), after which the definition was extended in 1927 by L. Vietoris to arbitrary subsets of Euclidean (and even metric) spaces.
 
One of the first homology theories (cf. [[Homology theory|Homology theory]]) defined for the non-polyhedral case. It was first considered by L.E.J. Brouwer in 1911 (for the case of the plane), after which the definition was extended in 1927 by L. Vietoris to arbitrary subsets of Euclidean (and even metric) spaces.
  
An (ordered) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966401.png" />-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966403.png" />-simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966404.png" /> of a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966405.png" /> of a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966406.png" /> is defined as an ordered subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966407.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966408.png" /> subject to the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v0966409.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664011.png" />-chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664012.png" /> are then defined for a given coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664013.png" /> as formal finite linear combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664015.png" />-simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664016.png" /> with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664017.png" />. The boundary of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664019.png" />-simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664020.png" /> is defined as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664021.png" />; this is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664022.png" />-chain. By linearity, the boundary of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664023.png" />-chain is defined and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664025.png" />-cycles are defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664026.png" />-chains with zero boundary. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664027.png" />-chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664028.png" /> of a set is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664029.png" />-homologous to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664030.png" /> (the notation is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664031.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664032.png" /> for a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664033.png" />-chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664034.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664035.png" />.
+
An (ordered) $  n $-
 +
dimensional $  \epsilon $-
 +
simplex $  t  ^ {n} $
 +
of a subset $  A $
 +
of a metric space $  X $
 +
is defined as an ordered subset $  ( e _ {0} \dots e _ {n} ) $
 +
in $  A $
 +
subject to the condition $  \mathop{\rm diam} \{ e _ {0} \dots e _ {n} \} < \epsilon $.  
 +
The $  \epsilon $-
 +
chains of $  A $
 +
are then defined for a given coefficient group $  G $
 +
as formal finite linear combinations $  \sum g _ {i} t _ {i} $
 +
of $  \epsilon $-
 +
simplices $  t _ {i}  ^ {n} $
 +
with coefficients $  g _ {i} \in G $.  
 +
The boundary of an $  \epsilon $-
 +
simplex $  t  ^ {n} = ( e _ {0} \dots e _ {n} ) $
 +
is defined as follows: $  \Delta t  ^ {n} = \sum _ {i} (- 1)  ^ {i} ( e _ {0} \dots {\widehat{e}  } _ {i} \dots e _ {n} ) $;  
 +
this is an $  \epsilon $-
 +
chain. By linearity, the boundary of any $  \epsilon $-
 +
chain is defined and $  \epsilon $-
 +
cycles are defined as $  \epsilon $-
 +
chains with zero boundary. An $  \epsilon $-
 +
chain $  x  ^ {n} $
 +
of a set is $  \eta $-
 +
homologous to zero in $  A $(
 +
the notation is $  x  ^ {n} \sim 0 $)  
 +
if $  x  ^ {n} = \Delta y ^ {n+ 1 } $
 +
for a certain $  \eta $-
 +
chain $  y ^ {n+ 1 } $
 +
in $  A $.
  
A true cycle of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664036.png" /> is a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664037.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664038.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664039.png" />-cycle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664041.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664042.png" />). The true cycles form a group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664043.png" />. A true cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664044.png" /> is homologous to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664045.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664046.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664047.png" /> such that all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664048.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664049.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664050.png" />-homologous to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664051.png" />. One denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664052.png" /> the quotient group of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664053.png" /> by the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664054.png" /> of cycles that are homologous to zero.
+
A true cycle of a set $  A $
 +
is a sequence $  z  ^ {n} = \{ z _ {1}  ^ {n} \dots z _ {k}  ^ {n} ,\dots \} $
 +
in which $  z _ {k}  ^ {n} $
 +
is an $  \epsilon _ {k} $-
 +
cycle in $  A $
 +
and $  \epsilon _ {k} \rightarrow 0 $(
 +
$  k \rightarrow \infty $).  
 +
The true cycles form a group, $  Z  ^ {n} ( A, G) $.  
 +
A true cycle $  z $
 +
is homologous to zero in $  A $
 +
if for any $  \epsilon > 0 $
 +
there exists an $  N $
 +
such that all $  z _ {k}  ^ {n} $
 +
for $  k \geq  N $
 +
are $  \epsilon $-
 +
homologous to zero in $  A $.  
 +
One denotes by $  \Delta  ^ {n} ( A, G) $
 +
the quotient group of the group $  Z  ^ {n} ( A, G) $
 +
by the subgroup $  H  ^ {n} ( A, G) $
 +
of cycles that are homologous to zero.
  
A cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664055.png" /> is called convergent if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664056.png" /> there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664057.png" /> such that any two cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664059.png" /> are mutually <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664060.png" />-homologous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664061.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664062.png" />. The group of convergent cycles is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664063.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664064.png" /> be the corresponding quotient group.
+
A cycle $  z $
 +
is called convergent if for any $  \epsilon > 0 $
 +
there exists an $  N $
 +
such that any two cycles $  z _ {k}  ^ {n} $,  
 +
$  z _ {m}  ^ {n} $
 +
are mutually $  \epsilon $-
 +
homologous in $  A $
 +
if $  k, m \geq  N $.  
 +
The group of convergent cycles is denoted by $  Z _ {c}  ^ {n} ( A, G) $.  
 +
Let $  \Delta _ {c}  ^ {n} ( A, G) = Z _ {c}  ^ {n} ( A, G) / H _ {c}  ^ {n} ( A, G) $
 +
be the corresponding quotient group.
  
A cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664065.png" /> has compact support if there exists a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664066.png" /> such that all the vertices of all simplices of all cycles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664067.png" /> lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664068.png" />. One similarly modifies the concept of a cycle being homologous to zero by requiring the presence of a compact set on which all the homology-realizing chains lie; convergent cycles with compact support can thus be defined. By denoting with a subscript <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664069.png" /> the transition to cycles and homology with compact support, one obtains the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664071.png" />. The latter group is known as the Vietoris homology group. If the polyhedron is finite, the Vietoris homology groups coincide with the standard homology groups.
+
A cycle $  z $
 +
has compact support if there exists a compact set $  F \subseteq A $
 +
such that all the vertices of all simplices of all cycles $  z _ {k}  ^ {n} $
 +
lie in $  F $.  
 +
One similarly modifies the concept of a cycle being homologous to zero by requiring the presence of a compact set on which all the homology-realizing chains lie; convergent cycles with compact support can thus be defined. By denoting with a subscript $  k $
 +
the transition to cycles and homology with compact support, one obtains the groups $  \Delta _ {k}  ^ {n} ( A, G) $
 +
and $  \Delta _ {ck}  ^ {n} ( A, G) $.  
 +
The latter group is known as the Vietoris homology group. If the polyhedron is finite, the Vietoris homology groups coincide with the standard homology groups.
  
Relative homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664075.png" /> modulo a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664076.png" /> are also defined. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664077.png" />-cycle of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664078.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664079.png" /> is any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664080.png" />-chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664081.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664082.png" /> for which the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664083.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664084.png" />. In a similar manner, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664085.png" />-cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664086.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664087.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664088.png" />-homologous modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664089.png" /> to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664090.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664091.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664092.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664093.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664094.png" />-chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664095.png" />, while the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664096.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096640/v09664097.png" />.
+
Relative homology groups $  \Delta  ^ {n} ( A, B, G) $,
 +
$  \Delta _ {c}  ^ {n} ( A, B, G) $,
 +
$  \Delta _ {k}  ^ {n} ( A, B, G) $,  
 +
$  \Delta _ {ck}  ^ {n} ( A, B, G) $
 +
modulo a subset $  B \subseteq A $
 +
are also defined. An $  \epsilon $-
 +
cycle of the set $  A $
 +
modulo $  B $
 +
is any $  \epsilon $-
 +
chain $  x  ^ {n} $
 +
in $  A $
 +
for which the chain $  \Delta x  ^ {n} $
 +
lies in $  B $.  
 +
In a similar manner, an $  \epsilon $-
 +
cycle $  x  ^ {n} $
 +
modulo $  B $
 +
is $  \eta $-
 +
homologous modulo $  B $
 +
to zero in $  A $
 +
if $  x  ^ {n} = \Delta y  ^ {n+} 1 + w  ^ {n} $,  
 +
where $  y  ^ {n+} 1 $
 +
and $  w  ^ {n} $
 +
are $  \eta $-
 +
chains in $  A $,  
 +
while the chain $  w  ^ {n} $
 +
lies in $  B $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.G. Hocking,  G.S. Young,  "Topology" , Addison-Wesley  (1961)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.G. Hocking,  G.S. Young,  "Topology" , Addison-Wesley  (1961)</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


One of the first homology theories (cf. Homology theory) defined for the non-polyhedral case. It was first considered by L.E.J. Brouwer in 1911 (for the case of the plane), after which the definition was extended in 1927 by L. Vietoris to arbitrary subsets of Euclidean (and even metric) spaces.

An (ordered) $ n $- dimensional $ \epsilon $- simplex $ t ^ {n} $ of a subset $ A $ of a metric space $ X $ is defined as an ordered subset $ ( e _ {0} \dots e _ {n} ) $ in $ A $ subject to the condition $ \mathop{\rm diam} \{ e _ {0} \dots e _ {n} \} < \epsilon $. The $ \epsilon $- chains of $ A $ are then defined for a given coefficient group $ G $ as formal finite linear combinations $ \sum g _ {i} t _ {i} $ of $ \epsilon $- simplices $ t _ {i} ^ {n} $ with coefficients $ g _ {i} \in G $. The boundary of an $ \epsilon $- simplex $ t ^ {n} = ( e _ {0} \dots e _ {n} ) $ is defined as follows: $ \Delta t ^ {n} = \sum _ {i} (- 1) ^ {i} ( e _ {0} \dots {\widehat{e} } _ {i} \dots e _ {n} ) $; this is an $ \epsilon $- chain. By linearity, the boundary of any $ \epsilon $- chain is defined and $ \epsilon $- cycles are defined as $ \epsilon $- chains with zero boundary. An $ \epsilon $- chain $ x ^ {n} $ of a set is $ \eta $- homologous to zero in $ A $( the notation is $ x ^ {n} \sim 0 $) if $ x ^ {n} = \Delta y ^ {n+ 1 } $ for a certain $ \eta $- chain $ y ^ {n+ 1 } $ in $ A $.

A true cycle of a set $ A $ is a sequence $ z ^ {n} = \{ z _ {1} ^ {n} \dots z _ {k} ^ {n} ,\dots \} $ in which $ z _ {k} ^ {n} $ is an $ \epsilon _ {k} $- cycle in $ A $ and $ \epsilon _ {k} \rightarrow 0 $( $ k \rightarrow \infty $). The true cycles form a group, $ Z ^ {n} ( A, G) $. A true cycle $ z $ is homologous to zero in $ A $ if for any $ \epsilon > 0 $ there exists an $ N $ such that all $ z _ {k} ^ {n} $ for $ k \geq N $ are $ \epsilon $- homologous to zero in $ A $. One denotes by $ \Delta ^ {n} ( A, G) $ the quotient group of the group $ Z ^ {n} ( A, G) $ by the subgroup $ H ^ {n} ( A, G) $ of cycles that are homologous to zero.

A cycle $ z $ is called convergent if for any $ \epsilon > 0 $ there exists an $ N $ such that any two cycles $ z _ {k} ^ {n} $, $ z _ {m} ^ {n} $ are mutually $ \epsilon $- homologous in $ A $ if $ k, m \geq N $. The group of convergent cycles is denoted by $ Z _ {c} ^ {n} ( A, G) $. Let $ \Delta _ {c} ^ {n} ( A, G) = Z _ {c} ^ {n} ( A, G) / H _ {c} ^ {n} ( A, G) $ be the corresponding quotient group.

A cycle $ z $ has compact support if there exists a compact set $ F \subseteq A $ such that all the vertices of all simplices of all cycles $ z _ {k} ^ {n} $ lie in $ F $. One similarly modifies the concept of a cycle being homologous to zero by requiring the presence of a compact set on which all the homology-realizing chains lie; convergent cycles with compact support can thus be defined. By denoting with a subscript $ k $ the transition to cycles and homology with compact support, one obtains the groups $ \Delta _ {k} ^ {n} ( A, G) $ and $ \Delta _ {ck} ^ {n} ( A, G) $. The latter group is known as the Vietoris homology group. If the polyhedron is finite, the Vietoris homology groups coincide with the standard homology groups.

Relative homology groups $ \Delta ^ {n} ( A, B, G) $, $ \Delta _ {c} ^ {n} ( A, B, G) $, $ \Delta _ {k} ^ {n} ( A, B, G) $, $ \Delta _ {ck} ^ {n} ( A, B, G) $ modulo a subset $ B \subseteq A $ are also defined. An $ \epsilon $- cycle of the set $ A $ modulo $ B $ is any $ \epsilon $- chain $ x ^ {n} $ in $ A $ for which the chain $ \Delta x ^ {n} $ lies in $ B $. In a similar manner, an $ \epsilon $- cycle $ x ^ {n} $ modulo $ B $ is $ \eta $- homologous modulo $ B $ to zero in $ A $ if $ x ^ {n} = \Delta y ^ {n+} 1 + w ^ {n} $, where $ y ^ {n+} 1 $ and $ w ^ {n} $ are $ \eta $- chains in $ A $, while the chain $ w ^ {n} $ lies in $ B $.

References

[1] P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)

Comments

References

[a1] J.G. Hocking, G.S. Young, "Topology" , Addison-Wesley (1961)
How to Cite This Entry:
Vietoris homology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vietoris_homology&oldid=16886
This article was adapted from an original article by A.A. Mal'tsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article