Difference between revisions of "Vector function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | v0964501.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/V096/V.0906450 Vector function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A function $ \mathbf r ( t) $ | |
+ | of an argument | ||
+ | whose values belong to a [[Vector space|vector space]] V . | ||
− | A vector function is | + | A vector function with values in a finite-dimensional ( m - |
+ | dimensional) vector space V | ||
+ | is completely determined by its components $ r _ {j} ( t) $, | ||
+ | 1 \leq j \leq m , | ||
+ | with respect to some basis e _ {1} \dots e _ {m} | ||
+ | of V : | ||
− | + | $$ \tag{1 } | |
+ | \mathbf r ( t) = \ | ||
+ | \sum _ { j= } 1 ^ { m } r _ {j} ( t) \mathbf e _ {j} . | ||
+ | $$ | ||
− | + | A vector function is said to be continuous, differentiable, etc. (at a point or in a domain) if all functions r _ {j} ( t) | |
+ | are continuous, differentiable, etc. The following formulas are valid for a function $ \mathbf r ( t) $ | ||
+ | of one variable: | ||
− | + | $$ \tag{2 } | |
− | + | \frac{d}{dt} | |
+ | \mathbf r ( t) = \ | ||
+ | \lim\limits _ {h \rightarrow 0 } | ||
+ | \frac{\mathbf r ( t+ h)- \mathbf r ( t) }{h} | ||
+ | = \ | ||
+ | \sum _ { j= } 1 ^ { m } r _ {j} ^ \prime ( t ) \mathbf e _ {j} , | ||
+ | $$ | ||
+ | |||
+ | $$ \tag{3 } | ||
+ | \int\limits _ { t _ {0} } ^ { {t _ 1 } } \mathbf r ( t) dt = \sum _ { j= } 1 ^ { m } \left ( \int\limits _ { t _ {0} } ^ { {t _ 1 } } r _ {j} ( t) dt \right ) \mathbf e _ {j} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \mathbf r ( t) = \mathbf r ( t _ {0} ) + \sum _ { k= } 1 ^ { N } | ||
+ | |||
+ | \frac{1}{k!} | ||
+ | \mathbf r ^ {(} k) ( t _ {0} ) ( t- t _ {0} ) ^ {k} + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | |||
+ | \frac{1}{N!} | ||
+ | \int\limits _ {t _ {0} } ^ { t } ( t- \tau ) ^ {N} {\mathbf r } ^ {(} N+ 1) ( \tau ) d \tau | ||
+ | $$ | ||
(Taylor's formula). | (Taylor's formula). | ||
− | The set of vectors | + | The set of vectors \mathbf r ( t) ( |
+ | starting at zero in V ) | ||
+ | is called the hodograph of the vector function. The first derivative \dot{\mathbf r} ( t) | ||
+ | of a vector function of one real variable is a vector in V | ||
+ | tangent to the hodograph at the point \mathbf r ( t) . | ||
+ | If \mathbf r ( t) | ||
+ | describes the motion of a point mass, where t | ||
+ | denotes the time, then \dot{\mathbf r} ( t) | ||
+ | is the instantaneous velocity vector of the point at the time t . | ||
+ | The second derivative \dot{\mathbf r} dot ( t) | ||
+ | is the acceleration vector of the point. | ||
Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See [[Vector analysis|Vector analysis]]; [[Gradient|Gradient]]; [[Divergence|Divergence]]; [[Curl|Curl]], for the concepts of vector analysis for vector functions. | Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See [[Vector analysis|Vector analysis]]; [[Gradient|Gradient]]; [[Divergence|Divergence]]; [[Curl|Curl]], for the concepts of vector analysis for vector functions. | ||
Line 25: | Line 79: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, F. John, "Introduction to calculus and analysis" , '''1''' , Wiley (Interscience) (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Courant, F. John, "Introduction to calculus and analysis" , '''1''' , Wiley (Interscience) (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff</TD></TR></table> |
Revision as of 08:28, 6 June 2020
A function \mathbf r ( t)
of an argument t
whose values belong to a vector space V .
A vector function with values in a finite-dimensional ( m - dimensional) vector space V is completely determined by its components r _ {j} ( t) , 1 \leq j \leq m , with respect to some basis e _ {1} \dots e _ {m} of V :
\tag{1 } \mathbf r ( t) = \ \sum _ { j= } 1 ^ { m } r _ {j} ( t) \mathbf e _ {j} .
A vector function is said to be continuous, differentiable, etc. (at a point or in a domain) if all functions r _ {j} ( t) are continuous, differentiable, etc. The following formulas are valid for a function \mathbf r ( t) of one variable:
\tag{2 } \frac{d}{dt} \mathbf r ( t) = \ \lim\limits _ {h \rightarrow 0 } \frac{\mathbf r ( t+ h)- \mathbf r ( t) }{h} = \ \sum _ { j= } 1 ^ { m } r _ {j} ^ \prime ( t ) \mathbf e _ {j} ,
\tag{3 } \int\limits _ { t _ {0} } ^ { {t _ 1 } } \mathbf r ( t) dt = \sum _ { j= } 1 ^ { m } \left ( \int\limits _ { t _ {0} } ^ { {t _ 1 } } r _ {j} ( t) dt \right ) \mathbf e _ {j} ,
\mathbf r ( t) = \mathbf r ( t _ {0} ) + \sum _ { k= } 1 ^ { N } \frac{1}{k!} \mathbf r ^ {(} k) ( t _ {0} ) ( t- t _ {0} ) ^ {k} +
+ \frac{1}{N!} \int\limits _ {t _ {0} } ^ { t } ( t- \tau ) ^ {N} {\mathbf r } ^ {(} N+ 1) ( \tau ) d \tau
(Taylor's formula).
The set of vectors \mathbf r ( t) ( starting at zero in V ) is called the hodograph of the vector function. The first derivative \dot{\mathbf r} ( t) of a vector function of one real variable is a vector in V tangent to the hodograph at the point \mathbf r ( t) . If \mathbf r ( t) describes the motion of a point mass, where t denotes the time, then \dot{\mathbf r} ( t) is the instantaneous velocity vector of the point at the time t . The second derivative \dot{\mathbf r} dot ( t) is the acceleration vector of the point.
Partial derivatives and multiple integrals of vector functions of several variables are defined in analogy with formulas (2) and (3). See Vector analysis; Gradient; Divergence; Curl, for the concepts of vector analysis for vector functions.
In an infinite-dimensional normed vector space with a basis, the representation of a vector function in the form (1) is an infinite series, and a coordinate-wise definition of the operations of mathematical analysis involves difficulties connected with the concepts of convergence of series, the possibility of term-by-term differentiation and integration, etc.
References
[1] | N.E. Kochin, "Vector calculus and fundamentals of tensor calculus" , Moscow (1965) (In Russian) |
[2] | P.K. Rashevskii, "A course of differential geometry" , Moscow (1956) (In Russian) |
Comments
References
[a1] | R. Courant, F. John, "Introduction to calculus and analysis" , 1 , Wiley (Interscience) (1965) |
[a2] | J.E. Marsden, A.J. Tromba, "Vector calculus" , Freeman (1981) |
[a3] | J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1960) (Translated from French) |
[a4] | A. Jeffrey, "Mathematics for scientists and engineers" , v. Nostrand-Reinhold (1989) pp. 493ff |
Vector function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vector_function&oldid=11242