Difference between revisions of "Vandermonde determinant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | v0960601.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/V096/V.0906060 Vandermonde determinant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Determinant|determinant]] of order $ n $ | |
+ | of the type | ||
− | + | $$ \tag{* } | |
+ | B ( a _ {1} \dots a _ {n} ) = \ | ||
+ | \left | | ||
− | If the ring has no zero divisors, the fundamental property of a Vandermonde determinant holds: | + | where $ a _ {1} \dots a _ {n} $ |
+ | are elements of a commutative ring. For any $ n \geq 2 $, | ||
+ | |||
+ | $$ | ||
+ | B ( a _ {1} \dots a _ {n} ) = \ | ||
+ | \prod _ {1 \leq j < i \leq n } ( a _ {i} - a _ {j} ). | ||
+ | $$ | ||
+ | |||
+ | If the ring has no zero divisors, the fundamental property of a Vandermonde determinant holds: $ B( a _ {1} \dots a _ {n} ) = 0 $ | ||
+ | if and only if not all the elements $ a _ {1} \dots a _ {n} $ | ||
+ | are different from each other. The determinant was first studied by A.T. Vandermonde for the case $ n = 3 $, | ||
+ | and then in 1815 by A.L. Cauchy . | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1771 (1774)) pp. 365–416</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1772 (1776)) pp. 516–532</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> A.A. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" ''J. École Polytechnique'' , '''17''' : 10 (1815) pp. 29-</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> A.L. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" , ''Oeuvres Sér. 2'' , '''1''' , Gauthier-Villars (1905) pp. 91–169</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1771 (1774)) pp. 365–416</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1772 (1776)) pp. 516–532</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> A.A. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" ''J. École Polytechnique'' , '''17''' : 10 (1815) pp. 29-</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> A.L. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" , ''Oeuvres Sér. 2'' , '''1''' , Gauthier-Villars (1905) pp. 91–169</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The matrix | The matrix | ||
− | + | $$ | |
+ | \left ( | ||
participating in (*) is called a Vandermonde matrix. | participating in (*) is called a Vandermonde matrix. | ||
− | The Vandermonde matrix plays a role in approximation theory. E.g., using it one can prove that there is a unique polynomial of degree | + | The Vandermonde matrix plays a role in approximation theory. E.g., using it one can prove that there is a unique polynomial of degree $ n $ |
+ | taking prescribed values at $ n+ 1 $ | ||
+ | distinct points, cf. [[#References|[a1]]], p. 58. See [[#References|[a1]]], p. 64, Problem 13, for an algorithm to compute the inverse of a Vandermonde matrix. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)</TD></TR></table> |
Latest revision as of 08:27, 6 June 2020
A determinant of order $ n $
of the type
$$ \tag{* } B ( a _ {1} \dots a _ {n} ) = \ \left | where $ a _ {1} \dots a _ {n} $ are elements of a commutative ring. For any $ n \geq 2 $, $$ B ( a _ {1} \dots a _ {n} ) = \ \prod _ {1 \leq j < i \leq n } ( a _ {i} - a _ {j} ). $$ If the ring has no zero divisors, the fundamental property of a Vandermonde determinant holds: $ B( a _ {1} \dots a _ {n} ) = 0 $ if and only if not all the elements $ a _ {1} \dots a _ {n} $ are different from each other. The determinant was first studied by A.T. Vandermonde for the case $ n = 3 $, and then in 1815 by A.L. Cauchy . ===='"`UNIQ--h-0--QINU`"'References==== <table><tr><td valign="top">[1a]</td> <td valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1771 (1774)) pp. 365–416</td></tr><tr><td valign="top">[1b]</td> <td valign="top"> A.T. Vandermonde, ''Histoire Acad. R. Sci. Paris'' (1772 (1776)) pp. 516–532</td></tr><tr><td valign="top">[2a]</td> <td valign="top"> A.A. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" ''J. École Polytechnique'' , '''17''' : 10 (1815) pp. 29-</td></tr><tr><td valign="top">[2b]</td> <td valign="top"> A.L. Cauchy, "Mémoire sur les fonctions qui ne peuvent obtenir que deux values" , ''Oeuvres Sér. 2'' , '''1''' , Gauthier-Villars (1905) pp. 91–169</td></tr></table> ===='"`UNIQ--h-1--QINU`"'Comments==== The matrix $$ \left (
participating in (*) is called a Vandermonde matrix.
The Vandermonde matrix plays a role in approximation theory. E.g., using it one can prove that there is a unique polynomial of degree $ n $ taking prescribed values at $ n+ 1 $ distinct points, cf. [a1], p. 58. See [a1], p. 64, Problem 13, for an algorithm to compute the inverse of a Vandermonde matrix.
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) |
Vandermonde determinant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vandermonde_determinant&oldid=19300