Difference between revisions of "Vague topology"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | v0960001.png | ||
| + | $#A+1 = 38 n = 0 | ||
| + | $#C+1 = 38 : ~/encyclopedia/old_files/data/V096/V.0906000 Vague topology | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | Let $ X $ | |
| + | be a locally compact Hausdorff space. Assume that $ X $ | ||
| + | is second countable (i.e. there is a countable base). Then $ X $ | ||
| + | is a Polish space (there exists a complete separable metrization). Let $ \mathfrak X $ | ||
| + | be the Borel field of $ X $( | ||
| + | cf. [[Borel field of sets|Borel field of sets]]), generated by the (set of open subsets of the) topology of $ X $. | ||
| + | Let $ \mathfrak B $ | ||
| + | be the ring of all relatively compact elements of $ \mathfrak X $, | ||
| + | the ring of bounded Borel sets. Let $ \mathfrak M $ | ||
| + | be the collection of all Borel measures on $ X $( | ||
| + | cf. [[Borel measure|Borel measure]]). Let $ \mathfrak F _ {c} $ | ||
| + | be the space of real-valued functions of compact support on $ X $. | ||
| + | A sequence of elements $ \mu _ {n} \in \mathfrak M $ | ||
| + | converges to $ \mu \in \mathfrak M $ | ||
| + | if for all $ f \in \mathfrak F _ {c} $, | ||
| − | + | $$ \tag{* } | |
| + | \int\limits _ { X } f( x) \mu _ {n} ( dx ) = \ | ||
| + | \int\limits _ { X } f( x) \mu ( dx) . | ||
| + | $$ | ||
| − | If a | + | The topology thus obtained on $ \mathfrak M $ |
| + | is called the vague topology. If (*) is required to hold for all bounded continuous functions, one obtains the weak topology on $ \mathfrak M $. | ||
| + | Thus, the vague topology is weaker than the weak topology. The difference is illustrated by the observation that a subset $ {\mathcal M} \subset \mathfrak M $ | ||
| + | is relatively compact in the vague topology if and only if $ \mu ( B) < \infty $ | ||
| + | for all $ \mu \in {\mathcal M} $ | ||
| + | and is relatively compact in the weak topology if and only if $ \mu ( X) < \infty $ | ||
| + | for all $ \mu \in {\mathcal M} $ | ||
| + | and $ \inf _ {B \in \mathfrak B } \sup _ {\mu \in {\mathcal M} } \mu ( X \setminus B) = 0 $. | ||
| + | |||
| + | Let $ \mathfrak N $ | ||
| + | be the set of all integer-valued elements of $ \mathfrak M $, | ||
| + | i.e. those $ \mu \in \mathfrak M $ | ||
| + | for which $ \mu ( B) \in \{ 0, 1, 2, . . . \} $ | ||
| + | for all $ B \in \mathfrak B $. | ||
| + | Then $ \mathfrak N $ | ||
| + | is vaguely closed in $ \mathfrak M $. | ||
| + | Both $ \mathfrak N $ | ||
| + | and $ \mathfrak M $ | ||
| + | are Polish in the vague topology. | ||
| + | |||
| + | If a sequence of real random variables $ Y _ {n} $ | ||
| + | on a probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ | ||
| + | converges in probability (cf. [[Convergence in probability|Convergence in probability]]) to a random variable $ Y $, | ||
| + | then their associated measures converge vaguely. If $ Y $ | ||
| + | is $ {\mathsf P} $- | ||
| + | almost surely constant, the converse also holds. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. §7.7 (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Kallenberg, "Random measures" , Akademie Verlag & Acad. Press (1986) pp. Chapt. 15</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Grandell, "Doubly stochastic Poisson processes" , Springer (1976) pp. Appendix</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N. Bourbaki, "Intégration" , ''Eléments de mathématiques'' , Hermann (1965) pp. Chapt. 1–4, §3.9</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. §7.7 (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Kallenberg, "Random measures" , Akademie Verlag & Acad. Press (1986) pp. Chapt. 15</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Grandell, "Doubly stochastic Poisson processes" , Springer (1976) pp. Appendix</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> N. Bourbaki, "Intégration" , ''Eléments de mathématiques'' , Hermann (1965) pp. Chapt. 1–4, §3.9</TD></TR></table> | ||
Revision as of 08:27, 6 June 2020
Let $ X $
be a locally compact Hausdorff space. Assume that $ X $
is second countable (i.e. there is a countable base). Then $ X $
is a Polish space (there exists a complete separable metrization). Let $ \mathfrak X $
be the Borel field of $ X $(
cf. Borel field of sets), generated by the (set of open subsets of the) topology of $ X $.
Let $ \mathfrak B $
be the ring of all relatively compact elements of $ \mathfrak X $,
the ring of bounded Borel sets. Let $ \mathfrak M $
be the collection of all Borel measures on $ X $(
cf. Borel measure). Let $ \mathfrak F _ {c} $
be the space of real-valued functions of compact support on $ X $.
A sequence of elements $ \mu _ {n} \in \mathfrak M $
converges to $ \mu \in \mathfrak M $
if for all $ f \in \mathfrak F _ {c} $,
$$ \tag{* } \int\limits _ { X } f( x) \mu _ {n} ( dx ) = \ \int\limits _ { X } f( x) \mu ( dx) . $$
The topology thus obtained on $ \mathfrak M $ is called the vague topology. If (*) is required to hold for all bounded continuous functions, one obtains the weak topology on $ \mathfrak M $. Thus, the vague topology is weaker than the weak topology. The difference is illustrated by the observation that a subset $ {\mathcal M} \subset \mathfrak M $ is relatively compact in the vague topology if and only if $ \mu ( B) < \infty $ for all $ \mu \in {\mathcal M} $ and is relatively compact in the weak topology if and only if $ \mu ( X) < \infty $ for all $ \mu \in {\mathcal M} $ and $ \inf _ {B \in \mathfrak B } \sup _ {\mu \in {\mathcal M} } \mu ( X \setminus B) = 0 $.
Let $ \mathfrak N $ be the set of all integer-valued elements of $ \mathfrak M $, i.e. those $ \mu \in \mathfrak M $ for which $ \mu ( B) \in \{ 0, 1, 2, . . . \} $ for all $ B \in \mathfrak B $. Then $ \mathfrak N $ is vaguely closed in $ \mathfrak M $. Both $ \mathfrak N $ and $ \mathfrak M $ are Polish in the vague topology.
If a sequence of real random variables $ Y _ {n} $ on a probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ converges in probability (cf. Convergence in probability) to a random variable $ Y $, then their associated measures converge vaguely. If $ Y $ is $ {\mathsf P} $- almost surely constant, the converse also holds.
References
| [a1] | H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. §7.7 (Translated from German) |
| [a2] | O. Kallenberg, "Random measures" , Akademie Verlag & Acad. Press (1986) pp. Chapt. 15 |
| [a3] | J. Grandell, "Doubly stochastic Poisson processes" , Springer (1976) pp. Appendix |
| [a4] | N. Bourbaki, "Intégration" , Eléments de mathématiques , Hermann (1965) pp. Chapt. 1–4, §3.9 |
Vague topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vague_topology&oldid=15068