Difference between revisions of "Urysohn equation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | u0958701.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/U095/U.0905870 Urysohn equation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A non-linear integral equation of the form | A non-linear integral equation of the form | ||
− | + | $$ \tag{* } | |
+ | \phi ( x) = \lambda | ||
+ | \int\limits _ \Omega K ( x , s , \phi ( s) ) d s + f ( x) ,\ \ | ||
+ | x \in \Omega , | ||
+ | $$ | ||
− | where | + | where $ \Omega $ |
+ | is a bounded closed set in a finite-dimensional Euclidean space and $ K ( x , s , t ) $ | ||
+ | and $ f ( x) $ | ||
+ | are given functions for $ x , s \in \Omega $, | ||
+ | $ - \infty < t < \infty $. | ||
+ | Suppose that $ K ( x , s , t ) $ | ||
+ | is continuous for the set of variables $ x , s \in \Omega $, | ||
+ | $ | t | \leq \rho $( | ||
+ | where $ \rho $ | ||
+ | is some positive number), and let | ||
− | + | $$ | |
+ | \left | | ||
+ | \frac{\partial K ( x , s , t ) }{\partial t } | ||
+ | \right | \leq M = \textrm{ const } ,\ \ | ||
+ | x , s \in \Omega ,\ \ | ||
+ | | t | \leq \rho . | ||
+ | $$ | ||
If | If | ||
− | < | + | $$ |
+ | | \lambda | M \mathop{\rm meas} ( \Omega ) < 1 , | ||
+ | $$ | ||
− | + | $$ | |
+ | | \lambda | \max _ {x \in \Omega } \int\limits | ||
+ | _ \Omega \max _ {| t | \leq \rho } | K ( x , s , t ) | d s \leq \rho , | ||
+ | $$ | ||
then the equation | then the equation | ||
− | + | $$ | |
+ | \phi ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi ( s) ) d s | ||
+ | $$ | ||
− | has a unique continuous solution | + | has a unique continuous solution $ \phi ( x) $, |
+ | $ x \in \Omega $, | ||
+ | satisfying the inequality $ | \phi ( x) | \leq \rho $. | ||
+ | If $ \phi _ {0} $ | ||
+ | is any continuous function satisfying $ | \phi _ {0} ( x) | \leq \rho $( | ||
+ | $ x \in \Omega $), | ||
+ | then the sequence of approximations | ||
− | + | $$ | |
+ | \phi _ {n} ( x) = \lambda | ||
+ | \int\limits _ \Omega K ( x , s , \phi _ {n-} 1 ( s) ) d s ,\ \ | ||
+ | n = 1 , 2 \dots | ||
+ | $$ | ||
− | converges uniformly on | + | converges uniformly on $ \Omega $ |
+ | to $ \phi ( x) $. | ||
Let the Urysohn operator | Let the Urysohn operator | ||
− | + | $$ | |
+ | A \phi ( x) = \ | ||
+ | \int\limits _ \Omega K ( x , s , \phi ( s) ) d s | ||
+ | $$ | ||
− | act in the space | + | act in the space $ L _ {p} ( \Omega ) $, |
+ | $ p > 1 $, | ||
+ | and let for all $ t _ {1} , t _ {2} $, | ||
+ | $ x , s \in \Omega $ | ||
+ | the inequality | ||
− | + | $$ | |
+ | | K ( x , s , t _ {1} ) - K ( x , s , t _ {2} ) | | ||
+ | \leq K _ {1} ( x , s ) | t _ {1} - t _ {2} | | ||
+ | $$ | ||
− | be fulfilled, where | + | be fulfilled, where $ K _ {1} $ |
+ | is a measurable function satisfying | ||
− | + | $$ | |
+ | \Delta ^ {p} = \ | ||
+ | \int\limits _ \Omega \left ( | ||
+ | \int\limits _ \Omega K _ {1} ^ {p / ( p - 1 ) } ( x , s ) d s \right ) | ||
+ | ^ {p-} 1 d x < \infty . | ||
+ | $$ | ||
− | Then for < | + | Then for $ | \lambda | < \Delta ^ {-} 1 $ |
+ | and $ f \in L _ {p} ( \Omega ) $, | ||
+ | equation (*) has a unique solution in $ L _ {p} ( \Omega ) $. | ||
Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. [[Non-linear integral equation|Non-linear integral equation]]). | Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. [[Non-linear integral equation|Non-linear integral equation]]). |
Latest revision as of 08:27, 6 June 2020
A non-linear integral equation of the form
$$ \tag{* } \phi ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi ( s) ) d s + f ( x) ,\ \ x \in \Omega , $$
where $ \Omega $ is a bounded closed set in a finite-dimensional Euclidean space and $ K ( x , s , t ) $ and $ f ( x) $ are given functions for $ x , s \in \Omega $, $ - \infty < t < \infty $. Suppose that $ K ( x , s , t ) $ is continuous for the set of variables $ x , s \in \Omega $, $ | t | \leq \rho $( where $ \rho $ is some positive number), and let
$$ \left | \frac{\partial K ( x , s , t ) }{\partial t } \right | \leq M = \textrm{ const } ,\ \ x , s \in \Omega ,\ \ | t | \leq \rho . $$
If
$$ | \lambda | M \mathop{\rm meas} ( \Omega ) < 1 , $$
$$ | \lambda | \max _ {x \in \Omega } \int\limits _ \Omega \max _ {| t | \leq \rho } | K ( x , s , t ) | d s \leq \rho , $$
then the equation
$$ \phi ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi ( s) ) d s $$
has a unique continuous solution $ \phi ( x) $, $ x \in \Omega $, satisfying the inequality $ | \phi ( x) | \leq \rho $. If $ \phi _ {0} $ is any continuous function satisfying $ | \phi _ {0} ( x) | \leq \rho $( $ x \in \Omega $), then the sequence of approximations
$$ \phi _ {n} ( x) = \lambda \int\limits _ \Omega K ( x , s , \phi _ {n-} 1 ( s) ) d s ,\ \ n = 1 , 2 \dots $$
converges uniformly on $ \Omega $ to $ \phi ( x) $.
Let the Urysohn operator
$$ A \phi ( x) = \ \int\limits _ \Omega K ( x , s , \phi ( s) ) d s $$
act in the space $ L _ {p} ( \Omega ) $, $ p > 1 $, and let for all $ t _ {1} , t _ {2} $, $ x , s \in \Omega $ the inequality
$$ | K ( x , s , t _ {1} ) - K ( x , s , t _ {2} ) | \leq K _ {1} ( x , s ) | t _ {1} - t _ {2} | $$
be fulfilled, where $ K _ {1} $ is a measurable function satisfying
$$ \Delta ^ {p} = \ \int\limits _ \Omega \left ( \int\limits _ \Omega K _ {1} ^ {p / ( p - 1 ) } ( x , s ) d s \right ) ^ {p-} 1 d x < \infty . $$
Then for $ | \lambda | < \Delta ^ {-} 1 $ and $ f \in L _ {p} ( \Omega ) $, equation (*) has a unique solution in $ L _ {p} ( \Omega ) $.
Under certain assumptions, equation (*) was first studied by P.S. Urysohn (cf. Non-linear integral equation).
References
[1] | M.A. Krasnosel'skii, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964) (Translated from Russian) |
[2] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian) |
Urysohn equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Urysohn_equation&oldid=13374