Difference between revisions of "Universal problems"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | u0957001.png | ||
| + | $#A+1 = 53 n = 0 | ||
| + | $#C+1 = 53 : ~/encyclopedia/old_files/data/U095/U.0905700 Universal problems | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| + | |||
| + | A concept in [[Category|category]] theory. Let $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal D} $ | ||
| + | be a [[Functor|functor]] between categories $ {\mathcal C} $ | ||
| + | and $ {\mathcal D} $, | ||
| + | and let $ D \in {\mathcal D} $. | ||
| + | The universal problem defined by this setup requires one to find a "best approximation" of $ D $ | ||
| + | in $ {\mathcal C} $, | ||
| + | i.e. a universal solution $ ( C, \iota ) $ | ||
| + | consisting of an object $ C \in {\mathcal C} $ | ||
| + | and a morphism $ \iota : {\mathcal D} \rightarrow {\mathcal G} ( C) $ | ||
| + | in $ {\mathcal D} $ | ||
| + | such that for every object $ C ^ \prime \in {\mathcal C} $ | ||
| + | and every morphism $ f: D \rightarrow {\mathcal G} ( C ^ \prime ) $ | ||
| + | there is a unique morphism $ g: C \rightarrow C ^ \prime $ | ||
| + | such that | ||
| + | |||
| + | $$ | ||
commutes. | commutes. | ||
| − | A universal solution exists if and only if the functor | + | A universal solution exists if and only if the functor $ {\mathcal D} ( D, {\mathcal G} - ) : {\mathcal C} \rightarrow \mathop{\rm Sets} $ |
| + | is representable (by $ C $, | ||
| + | cf. [[Representable functor|Representable functor]]). There is a universal solution for each choice of $ D $ | ||
| + | if and only if the functor $ {\mathcal G} $ | ||
| + | has a left [[Adjoint functor|adjoint functor]] $ {\mathcal F} : {\mathcal D} \rightarrow {\mathcal C} $. | ||
| + | A universal solution of a universal problem is unique up to an isomorphism. | ||
===Examples.=== | ===Examples.=== | ||
| + | 1) For $ {\mathcal G} $ | ||
| + | the underlying (or forgetful) functor from a category of equationally defined algebras (such as associative algebras, commutative associative algebras, Lie algebras, vector spaces, groups) to the category of sets and for a set $ X $, | ||
| + | the universal solution is the [[Free algebra|free algebra]] over $ X $. | ||
| − | + | 2) For $ {\mathcal G} $ | |
| − | + | the functor which associates a Lie algebra $ \mathop{\rm Lie} ( A) $ | |
| − | + | with every associative unitary algebra $ A $ | |
| + | by $ [ a, b] = ab- ba $ | ||
| + | and for a Lie algebra $ \mathfrak g $, | ||
| + | the universal solution is $ U( \mathfrak g ) $, | ||
| + | the [[Universal enveloping algebra|universal enveloping algebra]] of $ \mathfrak g $. | ||
| − | 3) For the imbedding | + | 3) For the imbedding $ {\mathcal G} : \mathop{\rm comm}.Groups \rightarrow fnnem Groups $ |
| + | and a group $ G $, | ||
| + | the universal solution is the commutator factor group of $ G $( | ||
| + | cf. [[Commutator subgroup|Commutator subgroup]]). | ||
| − | 4) In general, for every underlying (forgetful) functor | + | 4) In general, for every underlying (forgetful) functor $ {\mathcal G} $ |
| + | between categories of equationally defined algebras the corresponding universal problems have universal solutions, i.e. there are relatively free objects for any such functor $ {\mathcal G} $. | ||
| − | 5) For | + | 5) For $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal C} \times {\mathcal C} $ |
| + | the diagonal functor and $ ( A, B) \in {\mathcal C} \times {\mathcal C} $, | ||
| + | the universal problem can be stated in this way: Find an object $ C= A \amalg B $ | ||
| + | in $ {\mathcal C} $ | ||
| + | and a pair of morphisms $ ( \iota _ {A} : A \rightarrow C, \iota _ {B} : B \rightarrow C) $ | ||
| + | in $ {\mathcal C} \times {\mathcal C} $ | ||
| + | such that for any object $ C ^ \prime \in {\mathcal C} $ | ||
| + | and any pair $ ( f _ {A} : A \rightarrow C ^ \prime , f _ {B} : B \rightarrow C ^ \prime ) $ | ||
| + | there exists a unique morphism $ f : C \rightarrow C ^ \prime $ | ||
| + | such that | ||
| − | + | $$ | |
| − | commutes. The universal solution is the [[Coproduct|coproduct]] of | + | commutes. The universal solution is the [[Coproduct|coproduct]] of $ A $ |
| + | and $ B $. | ||
| − | 6) By considering the dual situation, i.e. by using the categories dual to | + | 6) By considering the dual situation, i.e. by using the categories dual to $ {\mathcal C} $ |
| + | and $ {\mathcal D} $, | ||
| + | one obtains the dual notions. For $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal C} \times {\mathcal C} $ | ||
| + | the diagonal functor and $ ( A, B) \in {\mathcal C} \times {\mathcal C} $, | ||
| + | the universal solution of the dual universal problem is the (categorical) product $ A \times B $ | ||
| + | of $ A $ | ||
| + | and $ B $. | ||
7) In general, limits and colimits can be obtained as universal solutions of appropriate universal problems. | 7) In general, limits and colimits can be obtained as universal solutions of appropriate universal problems. | ||
Latest revision as of 08:27, 6 June 2020
A concept in category theory. Let $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal D} $
be a functor between categories $ {\mathcal C} $
and $ {\mathcal D} $,
and let $ D \in {\mathcal D} $.
The universal problem defined by this setup requires one to find a "best approximation" of $ D $
in $ {\mathcal C} $,
i.e. a universal solution $ ( C, \iota ) $
consisting of an object $ C \in {\mathcal C} $
and a morphism $ \iota : {\mathcal D} \rightarrow {\mathcal G} ( C) $
in $ {\mathcal D} $
such that for every object $ C ^ \prime \in {\mathcal C} $
and every morphism $ f: D \rightarrow {\mathcal G} ( C ^ \prime ) $
there is a unique morphism $ g: C \rightarrow C ^ \prime $
such that
$$ commutes. A universal solution exists if and only if the functor $ {\mathcal D} ( D, {\mathcal G} - ) : {\mathcal C} \rightarrow \mathop{\rm Sets} $ is representable (by $ C $, cf. [[Representable functor|Representable functor]]). There is a universal solution for each choice of $ D $ if and only if the functor $ {\mathcal G} $ has a left [[Adjoint functor|adjoint functor]] $ {\mathcal F} : {\mathcal D} \rightarrow {\mathcal C} $. A universal solution of a universal problem is unique up to an isomorphism. ==='"`UNIQ--h-0--QINU`"'Examples.=== 1) For $ {\mathcal G} $ the underlying (or forgetful) functor from a category of equationally defined algebras (such as associative algebras, commutative associative algebras, Lie algebras, vector spaces, groups) to the category of sets and for a set $ X $, the universal solution is the [[Free algebra|free algebra]] over $ X $. 2) For $ {\mathcal G} $ the functor which associates a Lie algebra $ \mathop{\rm Lie} ( A) $ with every associative unitary algebra $ A $ by $ [ a, b] = ab- ba $ and for a Lie algebra $ \mathfrak g $, the universal solution is $ U( \mathfrak g ) $, the [[Universal enveloping algebra|universal enveloping algebra]] of $ \mathfrak g $. 3) For the imbedding $ {\mathcal G} : \mathop{\rm comm}.Groups \rightarrow fnnem Groups $ and a group $ G $, the universal solution is the commutator factor group of $ G $( cf. [[Commutator subgroup|Commutator subgroup]]). 4) In general, for every underlying (forgetful) functor $ {\mathcal G} $ between categories of equationally defined algebras the corresponding universal problems have universal solutions, i.e. there are relatively free objects for any such functor $ {\mathcal G} $. 5) For $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal C} \times {\mathcal C} $ the diagonal functor and $ ( A, B) \in {\mathcal C} \times {\mathcal C} $, the universal problem can be stated in this way: Find an object $ C= A \amalg B $ in $ {\mathcal C} $ and a pair of morphisms $ ( \iota _ {A} : A \rightarrow C, \iota _ {B} : B \rightarrow C) $ in $ {\mathcal C} \times {\mathcal C} $ such that for any object $ C ^ \prime \in {\mathcal C} $ and any pair $ ( f _ {A} : A \rightarrow C ^ \prime , f _ {B} : B \rightarrow C ^ \prime ) $ there exists a unique morphism $ f : C \rightarrow C ^ \prime $ such that $$
commutes. The universal solution is the coproduct of $ A $ and $ B $.
6) By considering the dual situation, i.e. by using the categories dual to $ {\mathcal C} $ and $ {\mathcal D} $, one obtains the dual notions. For $ {\mathcal G} : {\mathcal C} \rightarrow {\mathcal C} \times {\mathcal C} $ the diagonal functor and $ ( A, B) \in {\mathcal C} \times {\mathcal C} $, the universal solution of the dual universal problem is the (categorical) product $ A \times B $ of $ A $ and $ B $.
7) In general, limits and colimits can be obtained as universal solutions of appropriate universal problems.
References
| [a1] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
| [a2] | B. Pareigis, "Categories and functors" , Acad. Press (1970) |
Universal problems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_problems&oldid=19255