Namespaces
Variants
Actions

Difference between revisions of "Triad"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Quadruples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940801.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940802.png" /> is a [[Topological space|topological space]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940803.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940804.png" /> are subspaces of it such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940805.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940806.png" />. The homotopy groups of triads, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940808.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t0940809.png" />, it is just a set), have been introduced and are used in the proof of homotopy excision theorems. There is also an exact Mayer–Vietoris sequence connecting the homology groups of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408013.png" /> (cf. [[Homology group|Homology group]]).
+
<!--
 +
t0940801.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/T094/T.0904080 Triads
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
 +
{{TEX|auto}}
 +
{{TEX|done}}
  
 +
Quadruples  $  ( X;  A, B, x _ {0} ) $,
 +
where  $  X $
 +
is a [[Topological space|topological space]] and  $  A $
 +
and  $  B $
 +
are subspaces of it such that  $  A \cup B = X $
 +
and  $  x _ {0} \in A \cap B $.
 +
The homotopy groups of triads,  $  \pi _ {n} ( X;  A, B, x _ {0} ) $,
 +
$  n \geq  3 $(
 +
for  $  n = 2 $,
 +
it is just a set), have been introduced and are used in the proof of homotopy excision theorems. There is also an exact Mayer–Vietoris sequence connecting the homology groups of the spaces  $  X $,
 +
$  A $,
 +
$  B $,
 +
$  A \cap B $(
 +
cf. [[Homology group|Homology group]]).
  
 
====Comments====
 
====Comments====
For a triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408014.png" /> consisting of a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408015.png" /> and two subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408016.png" />, one defines the path space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408017.png" /> as the space of all paths in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408018.png" /> starting in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408019.png" /> and ending in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408020.png" />,
+
For a triple $  ( X ;  A, B) $
 +
consisting of a space $  X $
 +
and two subspaces $  A , B \subset  X $,
 +
one defines the path space $  \Omega ( X;  A, B) $
 +
as the space of all paths in $  X $
 +
starting in $  A $
 +
and ending in $  B $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408021.png" /></td> </tr></table>
+
$$
 +
\Omega ( X; A, B)  = \{ {p : [ 0, 1] \rightarrow X } : {
 +
p( 0) \in A , p( 1) \in B } \}
 +
.
 +
$$
  
If there is a distinguished point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408023.png" />, the constant path at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408024.png" /> is taken as a distinguished point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408025.png" /> (and is also denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408026.png" />).
+
If there is a distinguished point $  * $
 +
in $  A \cap B $,  
 +
the constant path at $  * $
 +
is taken as a distinguished point of $  \Omega ( X;  A, B) $(
 +
and is also denoted by $  * $).
  
The relative homotopy groups (cf. [[Homotopy group|Homotopy group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408028.png" />, can also be defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408029.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408030.png" /> be a triad. The homotopy groups of a triad are defined as the relative homotopy groups
+
The relative homotopy groups (cf. [[Homotopy group|Homotopy group]]) $  \pi _ {n} ( X, A, * ) $,  
 +
$  * \in A \subset  X $,  
 +
can also be defined as $  \pi _ {n-} 1 ( \Omega ( X;  A, * ) , * ) $.  
 +
Now let $  ( X;  A, B, * ) $
 +
be a triad. The homotopy groups of a triad are defined as the relative homotopy groups
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png" /></td> </tr></table>
+
$$
 +
\pi _ {n} ( X; A, B , * )  = \
 +
\pi _ {n-} 1 ( \Omega ( X; B, * ),\
 +
\Omega ( A; A \cap B , * ), * ).
 +
$$
  
Using the long homotopy sequence of the triplet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408032.png" /> there results the (first) homotopy sequence of a triad
+
Using the long homotopy sequence of the triplet $  ( \Omega ( X;  B, * ) , \Omega ( A;  A \cap B, * ), * ) $
 +
there results the (first) homotopy sequence of a triad
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408033.png" /></td> </tr></table>
+
$$
 +
{} \dots \rightarrow  \pi _ {n+} 1 ( X; A, B, * )  \mathop \rightarrow \limits ^  \partial 
 +
\pi _ {n} ( A, A \cap B, * ) \rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408034.png" /></td> </tr></table>
+
$$
 +
\rightarrow \
 +
\pi _ {n} ( X, B, * )  \rightarrow  \pi _ {n} ( X; A, B, x _ {0} )  \mathop \rightarrow \limits ^  \partial  \dots ,
 +
$$
  
 
so that the triad homotopy groups measure the extend to which the homotopy excision homomorphisms
 
so that the triad homotopy groups measure the extend to which the homotopy excision homomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408035.png" /></td> </tr></table>
+
$$
 +
\pi _ {n} ( A, A \cap B, * )  \rightarrow  \pi _ {n} ( X, B, * )
 +
$$
  
 
fail to be isomorphisms. The triad homotopy groups can also be defined as
 
fail to be isomorphisms. The triad homotopy groups can also be defined as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408036.png" /></td> </tr></table>
+
$$
 +
\pi _ {n} ( X; A, B, * )  = \pi _ {n-} 1 ( \Omega ( X; A, B), * ).
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.-T. Hu,  "Homotopy theory" , Acad. Press  (1955)  pp. Chapt. V, §10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Gray,  "Homotopy theory. An introduction to algebraic topology" , Acad. Press  (1975)  pp. 88</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. §6.17</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.-T. Hu,  "Homotopy theory" , Acad. Press  (1955)  pp. Chapt. V, §10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  B. Gray,  "Homotopy theory. An introduction to algebraic topology" , Acad. Press  (1975)  pp. 88</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. §6.17</TD></TR></table>

Latest revision as of 08:26, 6 June 2020


Quadruples $ ( X; A, B, x _ {0} ) $, where $ X $ is a topological space and $ A $ and $ B $ are subspaces of it such that $ A \cup B = X $ and $ x _ {0} \in A \cap B $. The homotopy groups of triads, $ \pi _ {n} ( X; A, B, x _ {0} ) $, $ n \geq 3 $( for $ n = 2 $, it is just a set), have been introduced and are used in the proof of homotopy excision theorems. There is also an exact Mayer–Vietoris sequence connecting the homology groups of the spaces $ X $, $ A $, $ B $, $ A \cap B $( cf. Homology group).

Comments

For a triple $ ( X ; A, B) $ consisting of a space $ X $ and two subspaces $ A , B \subset X $, one defines the path space $ \Omega ( X; A, B) $ as the space of all paths in $ X $ starting in $ A $ and ending in $ B $,

$$ \Omega ( X; A, B) = \{ {p : [ 0, 1] \rightarrow X } : { p( 0) \in A , p( 1) \in B } \} . $$

If there is a distinguished point $ * $ in $ A \cap B $, the constant path at $ * $ is taken as a distinguished point of $ \Omega ( X; A, B) $( and is also denoted by $ * $).

The relative homotopy groups (cf. Homotopy group) $ \pi _ {n} ( X, A, * ) $, $ * \in A \subset X $, can also be defined as $ \pi _ {n-} 1 ( \Omega ( X; A, * ) , * ) $. Now let $ ( X; A, B, * ) $ be a triad. The homotopy groups of a triad are defined as the relative homotopy groups

$$ \pi _ {n} ( X; A, B , * ) = \ \pi _ {n-} 1 ( \Omega ( X; B, * ),\ \Omega ( A; A \cap B , * ), * ). $$

Using the long homotopy sequence of the triplet $ ( \Omega ( X; B, * ) , \Omega ( A; A \cap B, * ), * ) $ there results the (first) homotopy sequence of a triad

$$ {} \dots \rightarrow \pi _ {n+} 1 ( X; A, B, * ) \mathop \rightarrow \limits ^ \partial \pi _ {n} ( A, A \cap B, * ) \rightarrow $$

$$ \rightarrow \ \pi _ {n} ( X, B, * ) \rightarrow \pi _ {n} ( X; A, B, x _ {0} ) \mathop \rightarrow \limits ^ \partial \dots , $$

so that the triad homotopy groups measure the extend to which the homotopy excision homomorphisms

$$ \pi _ {n} ( A, A \cap B, * ) \rightarrow \pi _ {n} ( X, B, * ) $$

fail to be isomorphisms. The triad homotopy groups can also be defined as

$$ \pi _ {n} ( X; A, B, * ) = \pi _ {n-} 1 ( \Omega ( X; A, B), * ). $$

References

[a1] S.-T. Hu, "Homotopy theory" , Acad. Press (1955) pp. Chapt. V, §10
[a2] B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 88
[a3] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. §6.17
How to Cite This Entry:
Triad. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Triad&oldid=16998
This article was adapted from an original article by Yu.B. Rudyak (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article