Namespaces
Variants
Actions

Difference between revisions of "Trefftz method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
t0940701.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/T094/T.0904070 Trefftz method
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem
 
One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940701.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\Delta u  = 0,\ \
 +
u \mid  _ {S}  = \phi ,
 +
$$
 +
 
 +
where  $  S $
 +
is the boundary of a domain  $  \Omega \subset  \mathbf R  ^ {m} $.  
 +
The solution of the problem (*) minimizes the functional
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940702.png" /> is the boundary of a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940703.png" />. The solution of the problem (*) minimizes the functional
+
$$
 +
J ( u)  = \int\limits _  \Omega  (  \mathop{\rm grad}  u ( x)) ^ {2}  dx
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940704.png" /></td> </tr></table>
+
over all functions satisfying the boundary condition  $  u \mid  _ {S} = \phi $.  
 +
Trefftz' method consists in the following. Suppose one is given a sequence of harmonic functions  $  w _ {1} , w _ {2} \dots $
 +
in  $  \Omega $
 +
that are square summable in  $  \Omega $
 +
together with their first derivatives. An approximate solution is sought in the form
  
over all functions satisfying the boundary condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940705.png" />. Trefftz' method consists in the following. Suppose one is given a sequence of harmonic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940706.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940707.png" /> that are square summable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940708.png" /> together with their first derivatives. An approximate solution is sought in the form
+
$$
 +
u _ {n}  = \
 +
\sum _ {j = 1 } ^ { n }  c _ {j} w _ {j} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t0940709.png" /></td> </tr></table>
+
the coefficients  $  c _ {j} $
 +
being determined from the condition that  $  J ( u _ {n} - u) $
 +
is minimal, where  $  u $
 +
is the exact solution of (*). This leads to the following system of equations for  $  c _ {1} \dots c _ {n} $:
  
the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407010.png" /> being determined from the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407011.png" /> is minimal, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407012.png" /> is the exact solution of (*). This leads to the following system of equations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407013.png" />:
+
$$
 +
\sum _ {j = 1 } ^ { n }  c _ {j} \int\limits _ { S } w _ {j}
 +
\frac{\partial  w _ {i} }{\partial  \nu }
 +
\
 +
dS  = \
 +
\int\limits _ { S } \phi
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407014.png" /></td> </tr></table>
+
\frac{\partial  w _ {i} }{\partial  \nu }
 +
  dS,\ \
 +
i = 1 \dots n,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407015.png" /> is the outward normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094070/t09407016.png" />.
+
where $  \nu $
 +
is the outward normal to $  S $.
  
 
Trefftz' method can be generalized to various boundary value problems (see [[#References|[2]]]–[[#References|[4]]]).
 
Trefftz' method can be generalized to various boundary value problems (see [[#References|[2]]]–[[#References|[4]]]).
Line 23: Line 63:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Trefftz,  "Ein Gegenstück zum Ritzschen Verfahren" , ''Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept.'' , O. Füssli  (1927)  pp. 131–137</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. [S.G. Mikhlin] Michlin,  "Variationsmethoden der mathematischen Physik" , Akademie Verlag  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Krylov,  V.V. Bobkov,  P.I. Monastyrnyi,  "Computing methods of higher mathematics" , '''2''' , Minsk  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.Sh. Birman,  "Variational methods for solving boundary value problems analogous to Trefftz' method"  ''Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr.'' , '''11''' :  13  (1956)  pp. 69–89  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Trefftz,  "Ein Gegenstück zum Ritzschen Verfahren" , ''Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept.'' , O. Füssli  (1927)  pp. 131–137</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.G. [S.G. Mikhlin] Michlin,  "Variationsmethoden der mathematischen Physik" , Akademie Verlag  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.I. Krylov,  V.V. Bobkov,  P.I. Monastyrnyi,  "Computing methods of higher mathematics" , '''2''' , Minsk  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.Sh. Birman,  "Variational methods for solving boundary value problems analogous to Trefftz' method"  ''Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr.'' , '''11''' :  13  (1956)  pp. 69–89  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe  (1969)  pp. 1056–1058</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Rektorys (ed.) , ''Applicable mathematics'' , Iliffe  (1969)  pp. 1056–1058</TD></TR></table>

Latest revision as of 08:26, 6 June 2020


One of the variational methods for solving boundary value problems. Suppose one has to solve the boundary value problem

$$ \tag{* } \Delta u = 0,\ \ u \mid _ {S} = \phi , $$

where $ S $ is the boundary of a domain $ \Omega \subset \mathbf R ^ {m} $. The solution of the problem (*) minimizes the functional

$$ J ( u) = \int\limits _ \Omega ( \mathop{\rm grad} u ( x)) ^ {2} dx $$

over all functions satisfying the boundary condition $ u \mid _ {S} = \phi $. Trefftz' method consists in the following. Suppose one is given a sequence of harmonic functions $ w _ {1} , w _ {2} \dots $ in $ \Omega $ that are square summable in $ \Omega $ together with their first derivatives. An approximate solution is sought in the form

$$ u _ {n} = \ \sum _ {j = 1 } ^ { n } c _ {j} w _ {j} , $$

the coefficients $ c _ {j} $ being determined from the condition that $ J ( u _ {n} - u) $ is minimal, where $ u $ is the exact solution of (*). This leads to the following system of equations for $ c _ {1} \dots c _ {n} $:

$$ \sum _ {j = 1 } ^ { n } c _ {j} \int\limits _ { S } w _ {j} \frac{\partial w _ {i} }{\partial \nu } \ dS = \ \int\limits _ { S } \phi \frac{\partial w _ {i} }{\partial \nu } dS,\ \ i = 1 \dots n, $$

where $ \nu $ is the outward normal to $ S $.

Trefftz' method can be generalized to various boundary value problems (see [2][4]).

The method was proposed by E. Trefftz (see [1]).

References

[1] E. Trefftz, "Ein Gegenstück zum Ritzschen Verfahren" , Verhandl. 2er Internat. Kongress. Techn. Mechanik Zürich, 1926, 12–17 Sept. , O. Füssli (1927) pp. 131–137
[2] S.G. [S.G. Mikhlin] Michlin, "Variationsmethoden der mathematischen Physik" , Akademie Verlag (1962) (Translated from Russian)
[3] V.I. Krylov, V.V. Bobkov, P.I. Monastyrnyi, "Computing methods of higher mathematics" , 2 , Minsk (1975) (In Russian)
[4] M.Sh. Birman, "Variational methods for solving boundary value problems analogous to Trefftz' method" Vestnik Leningrad. Gos. Univ. Ser. mat. Mekh. i Astr. , 11 : 13 (1956) pp. 69–89 (In Russian)

Comments

References

[a1] K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. 1056–1058
How to Cite This Entry:
Trefftz method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trefftz_method&oldid=12688
This article was adapted from an original article by G.M. Vainikko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article