Difference between revisions of "Transition-operator semi-group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0937701.png | ||
+ | $#A+1 = 67 n = 0 | ||
+ | $#C+1 = 67 : ~/encyclopedia/old_files/data/T093/T.0903770 Transition\AAhoperator semi\AAhgroup | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | {{MSC|60J35|47D07}} | ||
+ | |||
+ | [[Category:Markov processes]] | ||
+ | |||
+ | The [[Semi-group of operators|semi-group of operators]] generated by the [[Transition function|transition function]] of a [[Markov process|Markov process]]. From the transition function $ P( t, x, A) $ | ||
+ | of a homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ | ||
+ | in a state space $ ( E, {\mathcal B}) $ | ||
+ | one can construct certain semi-groups of linear operators $ P ^ {t} $ | ||
+ | acting in some Banach space $ B ${{ | ||
+ | Cite|F}}. Very often, $ B $ | ||
+ | is the space $ B ( E) $ | ||
+ | of bounded real-valued measurable functions $ f $ | ||
+ | in $ E $ | ||
+ | with the uniform norm (or for a [[Feller process|Feller process]] $ X $, | ||
+ | the space $ C ( E) $ | ||
+ | of continuous functions with the same norm) or else the space $ V( E) $ | ||
+ | of finite countably-additive functions $ \phi $ | ||
+ | on $ {\mathcal B} $ | ||
+ | with the complete variation as norm. In the first two cases one puts | ||
+ | |||
+ | $$ | ||
+ | P ^ {t} f( x) = \int\limits _ { E } f( y) {\mathsf P} ( t, x, dy); | ||
+ | $$ | ||
and in the third | and in the third | ||
− | + | $$ | |
+ | P ^ {t} \phi ( A) = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) | ||
+ | $$ | ||
− | (here | + | (here $ f $ |
+ | and $ \phi $ | ||
+ | belong to the corresponding spaces, $ x \in E $, | ||
+ | $ A \in {\mathcal B} $). | ||
+ | In all these cases the semi-group property holds: $ P ^ {t} P ^ {s} = P ^ {t+} s $, | ||
+ | $ s, t \geq 0 $, | ||
+ | and any of the three semi-groups $ \{ P ^ {t} \} $ | ||
+ | is called a transition-operator semi-group. | ||
− | In what follows, only the first case is considered. The usual definition of the infinitesimal generator | + | In what follows, only the first case is considered. The usual definition of the infinitesimal generator $ A $ |
+ | of the semi-group $ \{ P ^ {t} \} $( | ||
+ | this is also the infinitesimal generator of the process) is as follows: | ||
− | + | $$ | |
+ | Af = \lim\limits _ {t \downarrow 0 } | ||
+ | \frac{1}{t} | ||
+ | ( P ^ {t} f - f ) | ||
+ | $$ | ||
− | for all | + | for all $ f \in B ( E) $ |
+ | for which this limit exists as a limit in $ B ( E) $. | ||
+ | It is assumed that $ P( t, x, A) $ | ||
+ | for $ A \in {\mathcal B} $ | ||
+ | is a measurable function of the pair of variables $ ( t, x) $, | ||
+ | and one introduces the resolvent $ R ^ \alpha $ | ||
+ | of the process $ X $, | ||
+ | $ \alpha > 0 $, | ||
+ | by: | ||
− | + | $$ \tag{* } | |
+ | R ^ \alpha f = \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ^ {t} f dt ,\ \ | ||
+ | f \in B ( E). | ||
+ | $$ | ||
− | If | + | If $ \| P ^ {t} f- f \| \rightarrow 0 $ |
+ | as $ t \downarrow 0 $, | ||
+ | then $ Ag = \alpha g - f $, | ||
+ | where $ g = R ^ \alpha f $. | ||
+ | Under certain assumptions the integral (*) exists also for $ \alpha = 0 $, | ||
+ | and $ g = R ^ {0} f $ | ||
+ | satisfies the "Poisson equation" | ||
− | + | $$ | |
+ | Ag = - f | ||
+ | $$ | ||
− | (for this reason, in particular, | + | (for this reason, in particular, $ R ^ {0} f $ |
+ | is called the potential of $ f $). | ||
− | Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators | + | Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators {{Cite|Dy}}, {{Cite|GS}}. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function |
− | + | $$ | |
+ | v( t, x) = {\mathsf E} _ {x} \left [ \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t } \wedge \zeta } c( x _ {s} ) ds \right \} f( x _ {t \wedge \zeta } ) \right ] ,\ \ | ||
+ | t \geq 0,\ x \in E, | ||
+ | $$ | ||
− | is a unique solution to | + | is a unique solution to $ v _ {t} ^ \prime = Av + cv $, |
+ | $ v( 0, x) = f( x) $, | ||
+ | which is a not-too-rapidly-increasing function of $ t $. | ||
+ | Here $ {\mathsf E} _ {x} $ | ||
+ | is the mathematical expectation corresponding to $ {\mathsf P} _ {x} $, | ||
+ | while $ t \wedge \zeta = \min ( t, \zeta ) $. | ||
− | The operator | + | The operator $ A $ |
+ | is related to the characteristic operator $ \mathfrak A ${{ | ||
+ | Cite|Dy}}. Let $ X $ | ||
+ | be a Markov process that is right continuous in a topological space $ E $. | ||
+ | For a Borel function $ f $ | ||
+ | one puts | ||
− | + | $$ | |
+ | \mathfrak A f( x) = \lim\limits _ {U \downarrow x } \left [ | ||
+ | \frac{ {\mathsf E} _ {x} f( x _ \tau ) - | ||
+ | f( x) }{ {\mathsf E} _ {x} \tau } | ||
+ | \right ] , | ||
+ | $$ | ||
− | if the limit exists for all | + | if the limit exists for all $ x \in E $, |
+ | where $ U $ | ||
+ | runs through a system of neighbourhoods of the point $ x $ | ||
+ | contracting towards $ x $ | ||
+ | and where $ \tau $ | ||
+ | is the moment of first exit of $ X $ | ||
+ | from $ U $( | ||
+ | if $ {\mathsf E} _ {x} \tau = \infty $, | ||
+ | the fraction in the limit is set equal to zero). In many cases the calculation of $ Af $ | ||
+ | amounts to calculating $ \mathfrak A f $. | ||
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|F}}|| W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" ''Ann. of Math.'' , '''55''' (1952) pp. 468–519 {{MR|0047886}} {{ZBL|}} | |
− | + | |- | |
+ | |valign="top"|{{Ref|Dy}}|| E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) {{MR|0131898}} {{ZBL|}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|GS}}|| I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , '''2''' , Springer (1975) (Translated from Russian) {{MR|0375463}} {{ZBL|0305.60027}} | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|BG}}|| R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) {{MR|0264757}} {{ZBL|0169.49204}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Do}}|| J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 {{MR|0731258}} {{ZBL|0549.31001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Dy2}}|| E.B. Dynkin, "Markov processes" , '''1''' , Springer (1965) (Translated from Russian) {{MR|0193671}} {{ZBL|0132.37901}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|F2}}|| W. Feller, "An introduction to probability theory and its applications" , '''1–2''' , Wiley (1966) {{MR|0210154}} {{ZBL|0138.10207}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|L}}|| M. Loève, "Probability theory" , '''II''' , Springer (1978) {{MR|0651017}} {{MR|0651018}} {{ZBL|0385.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|DM}}|| C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''1–3''' , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|S}}|| M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) {{MR|0958914}} {{ZBL|0649.60079}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|AM}}|| S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" ''Forum Math.'' , '''3''' (1991) pp. 389–400 | ||
+ | |} |
Latest revision as of 08:26, 6 June 2020
2020 Mathematics Subject Classification: Primary: 60J35 Secondary: 47D07 [MSN][ZBL]
The semi-group of operators generated by the transition function of a Markov process. From the transition function $ P( t, x, A) $ of a homogeneous Markov process $ X = ( x _ {t} , \zeta , {\mathcal F} _ {t} , {\mathsf P} _ {x} ) $ in a state space $ ( E, {\mathcal B}) $ one can construct certain semi-groups of linear operators $ P ^ {t} $ acting in some Banach space $ B $[F]. Very often, $ B $ is the space $ B ( E) $ of bounded real-valued measurable functions $ f $ in $ E $ with the uniform norm (or for a Feller process $ X $, the space $ C ( E) $ of continuous functions with the same norm) or else the space $ V( E) $ of finite countably-additive functions $ \phi $ on $ {\mathcal B} $ with the complete variation as norm. In the first two cases one puts
$$ P ^ {t} f( x) = \int\limits _ { E } f( y) {\mathsf P} ( t, x, dy); $$
and in the third
$$ P ^ {t} \phi ( A) = \int\limits _ { E } {\mathsf P} ( t, y, A) \phi ( dy) $$
(here $ f $ and $ \phi $ belong to the corresponding spaces, $ x \in E $, $ A \in {\mathcal B} $). In all these cases the semi-group property holds: $ P ^ {t} P ^ {s} = P ^ {t+} s $, $ s, t \geq 0 $, and any of the three semi-groups $ \{ P ^ {t} \} $ is called a transition-operator semi-group.
In what follows, only the first case is considered. The usual definition of the infinitesimal generator $ A $ of the semi-group $ \{ P ^ {t} \} $( this is also the infinitesimal generator of the process) is as follows:
$$ Af = \lim\limits _ {t \downarrow 0 } \frac{1}{t} ( P ^ {t} f - f ) $$
for all $ f \in B ( E) $ for which this limit exists as a limit in $ B ( E) $. It is assumed that $ P( t, x, A) $ for $ A \in {\mathcal B} $ is a measurable function of the pair of variables $ ( t, x) $, and one introduces the resolvent $ R ^ \alpha $ of the process $ X $, $ \alpha > 0 $, by:
$$ \tag{* } R ^ \alpha f = \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ^ {t} f dt ,\ \ f \in B ( E). $$
If $ \| P ^ {t} f- f \| \rightarrow 0 $ as $ t \downarrow 0 $, then $ Ag = \alpha g - f $, where $ g = R ^ \alpha f $. Under certain assumptions the integral (*) exists also for $ \alpha = 0 $, and $ g = R ^ {0} f $ satisfies the "Poisson equation"
$$ Ag = - f $$
(for this reason, in particular, $ R ^ {0} f $ is called the potential of $ f $).
Knowledge of the infinitesimal generator enables one to derive important characteristics of the initial process; the classification of Markov processes amounts to the description of their corresponding infinitesimal generators [Dy], [GS]. Also, using the infinitesimal generator one can find the mean values of various functionals. For example, under certain assumptions the function
$$ v( t, x) = {\mathsf E} _ {x} \left [ \mathop{\rm exp} \left \{ \int\limits _ { 0 } ^ { {t } \wedge \zeta } c( x _ {s} ) ds \right \} f( x _ {t \wedge \zeta } ) \right ] ,\ \ t \geq 0,\ x \in E, $$
is a unique solution to $ v _ {t} ^ \prime = Av + cv $, $ v( 0, x) = f( x) $, which is a not-too-rapidly-increasing function of $ t $. Here $ {\mathsf E} _ {x} $ is the mathematical expectation corresponding to $ {\mathsf P} _ {x} $, while $ t \wedge \zeta = \min ( t, \zeta ) $.
The operator $ A $ is related to the characteristic operator $ \mathfrak A $[Dy]. Let $ X $ be a Markov process that is right continuous in a topological space $ E $. For a Borel function $ f $ one puts
$$ \mathfrak A f( x) = \lim\limits _ {U \downarrow x } \left [ \frac{ {\mathsf E} _ {x} f( x _ \tau ) - f( x) }{ {\mathsf E} _ {x} \tau } \right ] , $$
if the limit exists for all $ x \in E $, where $ U $ runs through a system of neighbourhoods of the point $ x $ contracting towards $ x $ and where $ \tau $ is the moment of first exit of $ X $ from $ U $( if $ {\mathsf E} _ {x} \tau = \infty $, the fraction in the limit is set equal to zero). In many cases the calculation of $ Af $ amounts to calculating $ \mathfrak A f $.
References
[F] | W. Feller, "The parabolic differential equations and the associated semi-groups of transformations" Ann. of Math. , 55 (1952) pp. 468–519 MR0047886 |
[Dy] | E.B. Dynkin, "Foundations of the theory of Markov processes" , Springer (1961) (Translated from Russian) MR0131898 |
[GS] | I.I. Gihman, A.V. Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) MR0375463 Zbl 0305.60027 |
Comments
References
[BG] | R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) MR0264757 Zbl 0169.49204 |
[Do] | J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 MR0731258 Zbl 0549.31001 |
[Dy2] | E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) MR0193671 Zbl 0132.37901 |
[F2] | W. Feller, "An introduction to probability theory and its applications" , 1–2 , Wiley (1966) MR0210154 Zbl 0138.10207 |
[L] | M. Loève, "Probability theory" , II , Springer (1978) MR0651017 MR0651018 Zbl 0385.60001 |
[DM] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , 1–3 , North-Holland (1978–1988) pp. Chapts. XII-XVI (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001 |
[S] | M.J. Sharpe, "General theory of Markov processes" , Acad. Press (1988) MR0958914 Zbl 0649.60079 |
[AM] | S. Albeverio, Zh.M. Ma, "A note on quasicontinuous kernels representing quasilinear positive maps" Forum Math. , 3 (1991) pp. 389–400 |
Transition-operator semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transition-operator_semi-group&oldid=17099