Difference between revisions of "System (in a category)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0919301.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/S091/S.0901930 System (in a category), | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | a | + | ''direct and inverse system in a category $ C $'' |
− | + | A direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ | |
+ | in $ C $ | ||
+ | consists of a collection of objects $ \{ Y ^ \alpha \} $, | ||
+ | indexed by a directed set $ \Lambda = \{ \alpha \} $, | ||
+ | and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \beta \} $ | ||
+ | in $ C $, | ||
+ | for $ \alpha \leq \beta $ | ||
+ | in $ \Lambda $, | ||
+ | such that | ||
− | + | a) $ f _ \alpha ^ { \alpha } = 1 _ {Y ^ \alpha } $ | |
+ | for $ \alpha \in \Lambda $; | ||
− | + | b) $ f _ \alpha ^ { \gamma } = f _ \beta ^ { \gamma } f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \gamma $ | |
+ | for $ \alpha \leq \beta \leq \gamma $ | ||
+ | in $ \Lambda $. | ||
− | a | + | There exists a category, $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $, |
+ | whose objects are indexed collections of morphisms $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} _ {\alpha \in \Lambda } $ | ||
+ | such that $ g _ \alpha = g _ \beta f _ \alpha ^ { \beta } $ | ||
+ | if $ \alpha \leq \beta $ | ||
+ | in $ \Lambda $ | ||
+ | and whose morphisms with domain $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} $ | ||
+ | and range $ \{ g _ \alpha ^ \prime : Y ^ \alpha \rightarrow Z ^ \prime \} $ | ||
+ | are morphisms $ h: Z \rightarrow Z ^ \prime $ | ||
+ | such that $ hg _ \alpha = g _ \alpha ^ \prime $ | ||
+ | for $ \alpha \in \Lambda $. | ||
+ | An [[initial object]] of $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ | ||
+ | is called a direct limit of the direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $. | ||
+ | The direct limits of sets, topological spaces, groups, and $ R $- | ||
+ | modules are examples of direct limits in their respective categories. | ||
− | + | Dually, an inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ | |
+ | in $ C $ | ||
+ | consists of a collection of objects $ \{ Y _ \alpha \} $, | ||
+ | indexed by a directed set $ \Lambda = \{ \alpha \} $, | ||
+ | and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y _ \beta \rightarrow Y _ \alpha \} $ | ||
+ | in $ C $, | ||
+ | for $ \alpha \leq \beta $ | ||
+ | in $ \Lambda $, | ||
+ | such that | ||
− | There exists a category, | + | a $ {} ^ \prime $) |
+ | $ f _ \alpha ^ { \alpha } = 1 _ {Y _ \alpha } $ | ||
+ | for $ \alpha \in \Lambda $; | ||
+ | |||
+ | b $ {} ^ \prime $) | ||
+ | $ f _ \alpha ^ { \gamma } = f _ \alpha ^ { \beta } f _ \beta ^ { \gamma } : Y _ \gamma \rightarrow Y _ \alpha $ | ||
+ | for $ \alpha \leq \beta \leq \gamma $ | ||
+ | in $ \Lambda $. | ||
+ | |||
+ | There exists a category, $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $, | ||
+ | whose objects are indexed collections of morphisms $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} _ {\alpha \in \Lambda } $ | ||
+ | such that $ g _ \alpha = f _ \alpha ^ { \beta } g _ \beta $ | ||
+ | if $ \alpha \leq \beta $ | ||
+ | in $ \Lambda $ | ||
+ | and whose morphisms with domain $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} $ | ||
+ | and range $ \{ g _ \alpha ^ \prime : X ^ \prime \rightarrow Y _ \alpha \} $ | ||
+ | are morphisms $ h: X \rightarrow X ^ \prime $ | ||
+ | of $ C $ | ||
+ | such that $ g _ \alpha ^ \prime h = g _ \alpha $ | ||
+ | for $ \alpha \in \Lambda $. | ||
+ | A [[terminal object]] of $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ | ||
+ | is called an inverse limit of the inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $. | ||
+ | The inverse limits of sets, topological spaces, groups, and $ R $- | ||
+ | modules are examples of inverse limits in their respective categories. | ||
The concept of an inverse limit is a categorical generalization of the topological concept of a [[Projective limit|projective limit]]. | The concept of an inverse limit is a categorical generalization of the topological concept of a [[Projective limit|projective limit]]. | ||
Line 21: | Line 84: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:24, 6 June 2020
direct and inverse system in a category $ C $
A direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ in $ C $ consists of a collection of objects $ \{ Y ^ \alpha \} $, indexed by a directed set $ \Lambda = \{ \alpha \} $, and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \beta \} $ in $ C $, for $ \alpha \leq \beta $ in $ \Lambda $, such that
a) $ f _ \alpha ^ { \alpha } = 1 _ {Y ^ \alpha } $ for $ \alpha \in \Lambda $;
b) $ f _ \alpha ^ { \gamma } = f _ \beta ^ { \gamma } f _ \alpha ^ { \beta } : Y ^ \alpha \rightarrow Y ^ \gamma $ for $ \alpha \leq \beta \leq \gamma $ in $ \Lambda $.
There exists a category, $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $, whose objects are indexed collections of morphisms $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} _ {\alpha \in \Lambda } $ such that $ g _ \alpha = g _ \beta f _ \alpha ^ { \beta } $ if $ \alpha \leq \beta $ in $ \Lambda $ and whose morphisms with domain $ \{ g _ \alpha : Y ^ \alpha \rightarrow Z \} $ and range $ \{ g _ \alpha ^ \prime : Y ^ \alpha \rightarrow Z ^ \prime \} $ are morphisms $ h: Z \rightarrow Z ^ \prime $ such that $ hg _ \alpha = g _ \alpha ^ \prime $ for $ \alpha \in \Lambda $. An initial object of $ \mathop{\rm dir} \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $ is called a direct limit of the direct system $ \{ Y ^ \alpha , f _ \alpha ^ { \beta } \} $. The direct limits of sets, topological spaces, groups, and $ R $- modules are examples of direct limits in their respective categories.
Dually, an inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ in $ C $ consists of a collection of objects $ \{ Y _ \alpha \} $, indexed by a directed set $ \Lambda = \{ \alpha \} $, and a collection of morphisms $ \{ f _ \alpha ^ { \beta } : Y _ \beta \rightarrow Y _ \alpha \} $ in $ C $, for $ \alpha \leq \beta $ in $ \Lambda $, such that
a $ {} ^ \prime $) $ f _ \alpha ^ { \alpha } = 1 _ {Y _ \alpha } $ for $ \alpha \in \Lambda $;
b $ {} ^ \prime $) $ f _ \alpha ^ { \gamma } = f _ \alpha ^ { \beta } f _ \beta ^ { \gamma } : Y _ \gamma \rightarrow Y _ \alpha $ for $ \alpha \leq \beta \leq \gamma $ in $ \Lambda $.
There exists a category, $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $, whose objects are indexed collections of morphisms $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} _ {\alpha \in \Lambda } $ such that $ g _ \alpha = f _ \alpha ^ { \beta } g _ \beta $ if $ \alpha \leq \beta $ in $ \Lambda $ and whose morphisms with domain $ \{ g _ \alpha : X \rightarrow Y _ \alpha \} $ and range $ \{ g _ \alpha ^ \prime : X ^ \prime \rightarrow Y _ \alpha \} $ are morphisms $ h: X \rightarrow X ^ \prime $ of $ C $ such that $ g _ \alpha ^ \prime h = g _ \alpha $ for $ \alpha \in \Lambda $. A terminal object of $ \mathop{\rm inv} \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $ is called an inverse limit of the inverse system $ \{ Y _ \alpha , f _ \alpha ^ { \beta } \} $. The inverse limits of sets, topological spaces, groups, and $ R $- modules are examples of inverse limits in their respective categories.
The concept of an inverse limit is a categorical generalization of the topological concept of a projective limit.
References
[1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
Comments
There is a competing terminology, with "direct limit" replaced by "colimit" , and "inverse limit" by "limit" .
References
[1a] | B. Mitchell, "Theory of categories" , Acad. Press (1965) |
System (in a category). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=System_(in_a_category)&oldid=18745