Difference between revisions of "Symmetric derivative"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0916101.png | ||
+ | $#A+1 = 26 n = 1 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/S091/S.0901610 Symmetric derivative | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A generalization of the concept of derivative to the case of set functions $ \Phi $ | |
+ | on an $ n $- | ||
+ | dimensional Euclidean space. The symmetric derivative at a point $ x $ | ||
+ | is the limit | ||
− | + | $$ | |
+ | \lim\limits _ {r \downarrow 0 } \ | ||
− | + | \frac{\Phi ( S ( x; r)) }{| S ( x; r) | } | |
+ | \equiv \ | ||
+ | D _ { \mathop{\rm sym} } | ||
+ | \Phi ( x), | ||
+ | $$ | ||
− | + | where $ S ( x; r) $ | |
+ | is the closed ball with centre $ x $ | ||
+ | and radius $ r $, | ||
+ | if this limit exists. The symmetric derivative of order $ n $ | ||
+ | at a point $ x $ | ||
+ | of a function $ f $ | ||
+ | of a real variable is defined as the limit | ||
− | + | $$ | |
+ | \lim\limits _ {h \rightarrow 0 } \ | ||
+ | |||
+ | \frac{\Delta _ {s} ^ {n} f ( x, h) }{h ^ {n} } | ||
+ | = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \lim\limits _ {h \rightarrow 0 } | ||
+ | \frac{\sum _ {k = 0 } ^ { n } \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) (- 1) ^ {k} f \left ( | ||
+ | x + { | ||
+ | \frac{n - 2k }{2} | ||
+ | } h \right ) }{h ^ {n} } | ||
+ | = D _ { \mathop{\rm sym} } ^ {n} f ( x). | ||
+ | $$ | ||
+ | |||
+ | A function $ f $ | ||
+ | of a real variable has a symmetric derivative of order $ 2r $ | ||
+ | at a point $ x $, | ||
+ | |||
+ | $$ | ||
+ | D _ { \mathop{\rm sym} } ^ {2r} f ( x) = \beta _ {2r} , | ||
+ | $$ | ||
if | if | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | ( f ( x + h) + f ( x - h)) - | ||
+ | \sum _ {k = 0 } ^ { r } | ||
+ | \beta _ {2k} | ||
+ | \frac{h ^ {2k} }{( 2k)! } | ||
+ | = \ | ||
+ | o ( h ^ {2r} ); | ||
+ | $$ | ||
− | and one of order | + | and one of order $ 2r + 1 $, |
− | + | $$ | |
+ | D _ { \mathop{\rm sym} } ^ {2r + 1 } f ( x) = \ | ||
+ | \beta _ {2r + 1 } , | ||
+ | $$ | ||
if | if | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | ( f ( x + h) - f ( x - h)) - | ||
+ | \sum _ {k = 0 } ^ { r } | ||
+ | \beta _ {2k + 1 } | ||
− | + | \frac{h ^ {2k + 1 } }{( 2k + 1)! } | |
+ | = \ | ||
+ | o ( h ^ {2r + 1 } ). | ||
+ | $$ | ||
+ | |||
+ | If $ f $ | ||
+ | has an $ n $- | ||
+ | th order derivative $ f ^ { ( n) } $ | ||
+ | at a point $ x $, | ||
+ | then there is (in both cases) a symmetric derivative at $ x $, | ||
+ | and it is equal to $ f ^ { ( n) } ( x) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. James, "Generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161028.png" />th primitives" ''Trans. Amer. Math. Soc.'' , '''76''' : 1 (1954) pp. 149–176</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. James, "Generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091610/s09161028.png" />th primitives" ''Trans. Amer. Math. Soc.'' , '''76''' : 1 (1954) pp. 149–176</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
In [[#References|[1]]] instead of derivative, "derivate" is used: symmetric derivate. | In [[#References|[1]]] instead of derivative, "derivate" is used: symmetric derivate. |
Latest revision as of 08:24, 6 June 2020
A generalization of the concept of derivative to the case of set functions $ \Phi $
on an $ n $-
dimensional Euclidean space. The symmetric derivative at a point $ x $
is the limit
$$ \lim\limits _ {r \downarrow 0 } \ \frac{\Phi ( S ( x; r)) }{| S ( x; r) | } \equiv \ D _ { \mathop{\rm sym} } \Phi ( x), $$
where $ S ( x; r) $ is the closed ball with centre $ x $ and radius $ r $, if this limit exists. The symmetric derivative of order $ n $ at a point $ x $ of a function $ f $ of a real variable is defined as the limit
$$ \lim\limits _ {h \rightarrow 0 } \ \frac{\Delta _ {s} ^ {n} f ( x, h) }{h ^ {n} } = $$
$$ = \ \lim\limits _ {h \rightarrow 0 } \frac{\sum _ {k = 0 } ^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f \left ( x + { \frac{n - 2k }{2} } h \right ) }{h ^ {n} } = D _ { \mathop{\rm sym} } ^ {n} f ( x). $$
A function $ f $ of a real variable has a symmetric derivative of order $ 2r $ at a point $ x $,
$$ D _ { \mathop{\rm sym} } ^ {2r} f ( x) = \beta _ {2r} , $$
if
$$ { \frac{1}{2} } ( f ( x + h) + f ( x - h)) - \sum _ {k = 0 } ^ { r } \beta _ {2k} \frac{h ^ {2k} }{( 2k)! } = \ o ( h ^ {2r} ); $$
and one of order $ 2r + 1 $,
$$ D _ { \mathop{\rm sym} } ^ {2r + 1 } f ( x) = \ \beta _ {2r + 1 } , $$
if
$$ { \frac{1}{2} } ( f ( x + h) - f ( x - h)) - \sum _ {k = 0 } ^ { r } \beta _ {2k + 1 } \frac{h ^ {2k + 1 } }{( 2k + 1)! } = \ o ( h ^ {2r + 1 } ). $$
If $ f $ has an $ n $- th order derivative $ f ^ { ( n) } $ at a point $ x $, then there is (in both cases) a symmetric derivative at $ x $, and it is equal to $ f ^ { ( n) } ( x) $.
References
[1] | S. Saks, "Theory of the integral" , Hafner (1937) (Translated from French) |
[2] | R.D. James, "Generalized th primitives" Trans. Amer. Math. Soc. , 76 : 1 (1954) pp. 149–176 |
Comments
In [1] instead of derivative, "derivate" is used: symmetric derivate.
Symmetric derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetric_derivative&oldid=15476