Difference between revisions of "Subparabolic function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0910001.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/S091/S.0901000 Subparabolic function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''subcaloric function'' | ''subcaloric function'' | ||
The analogue of a [[Subharmonic function|subharmonic function]] for the heat equation | The analogue of a [[Subharmonic function|subharmonic function]] for the heat equation | ||
− | + | $$ \tag{* } | |
+ | |||
+ | \frac{\partial u }{\partial t } | ||
+ | - \Delta ^ {2} u = 0, | ||
+ | $$ | ||
− | where | + | where $ u= u( x, t) $, |
+ | $ x = ( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} $ | ||
+ | and $ \Delta ^ {2} u = \sum _ {j=} 1 ^ {n} \partial ^ {2} u / \partial x _ {j} ^ {2} $ | ||
+ | is the [[Laplace operator|Laplace operator]]. For example, a function $ v = v( x, t) $, | ||
+ | $ x \in \mathbf R $, | ||
+ | $ t > 0 $, | ||
+ | of class $ C ^ {2} $ | ||
+ | will be a subparabolic function in the rectangle | ||
− | + | $$ | |
+ | D = \{ {( x, t) \in \mathbf R \times \mathbf R _ {+} } : {a < x < b, 0 < t < h } \} | ||
+ | $$ | ||
if | if | ||
− | + | $$ | |
+ | |||
+ | \frac{\partial v }{\partial t } | ||
+ | - | ||
+ | \frac{\partial ^ {2} v }{\partial x ^ {2} } | ||
+ | \leq 0 | ||
+ | $$ | ||
− | everywhere in | + | everywhere in $ D $. |
+ | In a more general case, let the point $ ( x _ {0} , t _ {0} ) \in D $, | ||
+ | let $ \Delta $ | ||
+ | be a sufficiently small equilateral triangle with base parallel to the axis $ t= 0 $ | ||
+ | and let $ ( x _ {0} , t _ {0} ) \in \Delta \subset D $. | ||
+ | A function $ v = v( x, t) $ | ||
+ | that is continuous in the closed domain $ \overline{D}\; $ | ||
+ | is said to be subparabolic in $ D $ | ||
+ | if its value at any point $ ( x _ {0} , t _ {0} ) \in D $ | ||
+ | is not greater than the value at this point of that solution of (*) in any sufficiently small triangle $ \Delta $, | ||
+ | $ ( x _ {0} , t _ {0} ) \in \Delta $, | ||
+ | that has the same values on the sides of $ \Delta $ | ||
+ | as $ v( x, t) $. | ||
Many properties of subharmonic functions, including the maximum principle, are also valid for subparabolic functions. | Many properties of subharmonic functions, including the maximum principle, are also valid for subparabolic functions. | ||
Line 19: | Line 62: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''2''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.G. Petrovskii, "Partial differential equations" , Saunders (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "Zur ersten Randwertaufgabe der Wärmeleitungsgleichung" ''Compos. Math.'' , '''1''' (1935) pp. 383–419</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''2''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.G. Petrovskii, "Partial differential equations" , Saunders (1967) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "Zur ersten Randwertaufgabe der Wärmeleitungsgleichung" ''Compos. Math.'' , '''1''' (1935) pp. 383–419</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 08:24, 6 June 2020
subcaloric function
The analogue of a subharmonic function for the heat equation
$$ \tag{* } \frac{\partial u }{\partial t } - \Delta ^ {2} u = 0, $$
where $ u= u( x, t) $, $ x = ( x _ {1} \dots x _ {n} ) \in \mathbf R ^ {n} $ and $ \Delta ^ {2} u = \sum _ {j=} 1 ^ {n} \partial ^ {2} u / \partial x _ {j} ^ {2} $ is the Laplace operator. For example, a function $ v = v( x, t) $, $ x \in \mathbf R $, $ t > 0 $, of class $ C ^ {2} $ will be a subparabolic function in the rectangle
$$ D = \{ {( x, t) \in \mathbf R \times \mathbf R _ {+} } : {a < x < b, 0 < t < h } \} $$
if
$$ \frac{\partial v }{\partial t } - \frac{\partial ^ {2} v }{\partial x ^ {2} } \leq 0 $$
everywhere in $ D $. In a more general case, let the point $ ( x _ {0} , t _ {0} ) \in D $, let $ \Delta $ be a sufficiently small equilateral triangle with base parallel to the axis $ t= 0 $ and let $ ( x _ {0} , t _ {0} ) \in \Delta \subset D $. A function $ v = v( x, t) $ that is continuous in the closed domain $ \overline{D}\; $ is said to be subparabolic in $ D $ if its value at any point $ ( x _ {0} , t _ {0} ) \in D $ is not greater than the value at this point of that solution of (*) in any sufficiently small triangle $ \Delta $, $ ( x _ {0} , t _ {0} ) \in \Delta $, that has the same values on the sides of $ \Delta $ as $ v( x, t) $.
Many properties of subharmonic functions, including the maximum principle, are also valid for subparabolic functions.
References
[1] | V.I. Smirnov, "A course of higher mathematics" , 2 , Addison-Wesley (1964) (Translated from Russian) |
[2] | I.G. Petrovskii, "Partial differential equations" , Saunders (1967) (Translated from Russian) |
[3] | I.G. Petrovskii, "Zur ersten Randwertaufgabe der Wärmeleitungsgleichung" Compos. Math. , 1 (1935) pp. 383–419 |
Comments
See [a1] for an account of subparabolic functions from a potential-theoretic point of view.
References
[a1] | J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1983) |
[a2] | A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964) |
Subparabolic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Subparabolic_function&oldid=12693