Namespaces
Variants
Actions

Difference between revisions of "Strip method (analytic functions)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
s0905001.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/S090/S.0900500 Strip method (analytic functions)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A method in the theory of functions of a complex variable that is based on inequalities relating the lengths of curves of a certain special family and the area of the domain occupied by this family. The method is based on Grötzsch' lemmas . One of them is formulated as follows.
 
A method in the theory of functions of a complex variable that is based on inequalities relating the lengths of curves of a certain special family and the area of the domain occupied by this family. The method is based on Grötzsch' lemmas . One of them is formulated as follows.
  
Consider a rectangle with sides of lengths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905002.png" /> which contains a finite number of non-overlapping simply-connected domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905004.png" />, each one having a Jordan boundary that meets the sides of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905005.png" /> in segments which do not degenerate into points (the regions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905006.png" /> form strips running from one side of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905007.png" /> to the other). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905008.png" /> is conformally mapped into a rectangle with sides of lengths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s0905009.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050010.png" /> such that the above segments become the sides of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050011.png" />, then
+
Consider a rectangle with sides of lengths $  A $
 +
and $  B $
 +
which contains a finite number of non-overlapping simply-connected domains $  S _ {k} $,  
 +
$  k = 1 \dots n $,  
 +
each one having a Jordan boundary that meets the sides of length $  A $
 +
in segments which do not degenerate into points (the regions $  S _ {k} $
 +
form strips running from one side of length $  A $
 +
to the other). If $  S _ {k} $
 +
is conformally mapped into a rectangle with sides of lengths $  a _ {k} $
 +
and $  b _ {k} $
 +
such that the above segments become the sides of length $  a _ {k} $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050012.png" /></td> </tr></table>
+
$$
 +
\sum _ { k= } 1 ^ { n } 
 +
\frac{a _ {k} }{b _ {k} }
 +
  \leq 
 +
\frac{A}{B}
 +
,
 +
$$
  
with equality attained only if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050014.png" />, are rectangles with sides of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090500/s09050017.png" />.
+
with equality attained only if the $  S _ {k} $,  
 +
$  k = 1 \dots n $,  
 +
are rectangles with sides of length $  a _ {k}  ^  \prime  $
 +
and $  B $
 +
with $  \sum _ {k=} 1  ^ {n} a _ {k}  ^  \prime  = A $.
  
 
Another lemma is the [[Grötzsch principle|Grötzsch principle]]. The Grötzsch lemmas are true also for an infinite set of subdomains.
 
Another lemma is the [[Grötzsch principle|Grötzsch principle]]. The Grötzsch lemmas are true also for an infinite set of subdomains.

Revision as of 08:24, 6 June 2020


A method in the theory of functions of a complex variable that is based on inequalities relating the lengths of curves of a certain special family and the area of the domain occupied by this family. The method is based on Grötzsch' lemmas . One of them is formulated as follows.

Consider a rectangle with sides of lengths $ A $ and $ B $ which contains a finite number of non-overlapping simply-connected domains $ S _ {k} $, $ k = 1 \dots n $, each one having a Jordan boundary that meets the sides of length $ A $ in segments which do not degenerate into points (the regions $ S _ {k} $ form strips running from one side of length $ A $ to the other). If $ S _ {k} $ is conformally mapped into a rectangle with sides of lengths $ a _ {k} $ and $ b _ {k} $ such that the above segments become the sides of length $ a _ {k} $, then

$$ \sum _ { k= } 1 ^ { n } \frac{a _ {k} }{b _ {k} } \leq \frac{A}{B} , $$

with equality attained only if the $ S _ {k} $, $ k = 1 \dots n $, are rectangles with sides of length $ a _ {k} ^ \prime $ and $ B $ with $ \sum _ {k=} 1 ^ {n} a _ {k} ^ \prime = A $.

Another lemma is the Grötzsch principle. The Grötzsch lemmas are true also for an infinite set of subdomains.

The strip method as a method in the theory of univalent conformal and quasi-conformal mapping was first used by H. Grötzsch , who used the method in a systematic study and solved numerous extremal problems for univalent functions defined in finitely-connected and infinitely-connected domains (see [3]; for other applications, see [2]).

The method also forms the basis of the method of the extremal metric (cf. Extremal metric, method of the).

References

[1a] H. Grötzsch, "Über einige Extremalprobleme der konformen Abbildung I" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Phys. Kl. , 80 : 6 (1928) pp. 367–376
[1b] H. Grötzsch, "Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Phys. Kl. , 80 : 7 (1929) pp. 503–507
[1c] H. Grötzsch, "Über die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender schlichter Bereiche" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Phys. Kl. , 81 : 1 (1929) pp. 38–48
[1d] H. Grötzsch, "Über konforme Abbildung unendlichvielfach zusammenhängender schlichter Bereiche mit endlichvielen Häufungsrandkomponenten" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Phys. Kl. , 81 : 2 (1929) pp. 51–87
[2] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[3] J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)
How to Cite This Entry:
Strip method (analytic functions). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Strip_method_(analytic_functions)&oldid=14494
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article