Difference between revisions of "Stratification"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | s0904301.png | ||
+ | $#A+1 = 46 n = 0 | ||
+ | $#C+1 = 46 : ~/encyclopedia/old_files/data/S090/S.0900430 Stratification | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | A decomposition of a (possibly infinite-dimensional) manifold into connected submanifolds of strictly-diminishing dimensions. | ||
====Comments==== | ====Comments==== | ||
− | Usually a | + | Usually a "stratification" of a space means more than just some decomposition into connected pieces with diminishing dimensions. |
− | Let < | + | Let $ ( P, < ) $ |
+ | be a partially ordered set. A $ P $- | ||
+ | decomposition of a topological space $ X $ | ||
+ | is a locally finite collection of subspaces $ S _ {i} $ | ||
+ | of $ X $, | ||
+ | labelled by the elements of $ P $, | ||
+ | such that: | ||
− | 1) | + | 1) $ S _ {i} \cap S _ {j} = \emptyset $ |
+ | if $ i \neq j $; | ||
− | 2) | + | 2) $ S _ {i} $ |
+ | is locally closed for all $ i \in P $; | ||
− | 3) | + | 3) $ X = \cup _ {i \in P } S _ {i} $; |
− | 4) if | + | 4) if $ S _ {i} \cap \overline{ {S _ {j} }}\; \neq \emptyset $, |
+ | then $ S _ {i} \subset \overline{ {S _ {j} }}\; $( | ||
+ | and this is equivalent to $ i \leq j $ | ||
+ | in $ P $). | ||
− | As an example, consider the subset of | + | As an example, consider the subset of $ \mathbf R ^ {2} $ |
+ | given by the inequality $ x ^ {3} - y ^ {2} \geq 0 $ | ||
+ | divided into the four pieces $ \{ {( x, y) } : {x ^ {3} - y ^ {2} > 0 } \} $, | ||
+ | $ \{ {( x, y) } : {x ^ {3} = y ^ {2} , y > 0 } \} $, | ||
+ | $ \{ {( x, y) } : {x ^ {3} = y ^ {2} , y < 0 } \} $, | ||
+ | $ \{ ( 0, 0) \} $. | ||
− | Now let | + | Now let $ X $ |
+ | be a subset of a smooth manifold $ M $. | ||
+ | A stratification of $ X $ | ||
+ | is a $ P $- | ||
+ | decomposition $ ( S _ {i} ) _ {i \in P } $ | ||
+ | for some partially ordered set $ P $ | ||
+ | such that each of the pieces is a smooth submanifold of $ M $. | ||
− | The stratification | + | The stratification $ ( S _ {i} ) $ |
+ | is called a Whitney stratification if for every pair of strata $ S _ {i} , S _ {j} $ | ||
+ | with $ S _ {i} \subset \overline{ {S _ {j} }}\; $ | ||
+ | the following Whitney's conditions $ A $ | ||
+ | and $ B $ | ||
+ | hold. Suppose that a sequence of points $ y _ {k} \in S _ {i} $ | ||
+ | converges to $ y \in S _ {i} $ | ||
+ | and a sequence of points $ x _ {k} \in S _ {j} $ | ||
+ | also converges to $ y \in S _ {i} $. | ||
+ | Suppose, moreover, that the tangent planes $ T _ {x _ {k} } S _ {j} $ | ||
+ | converge to some limiting plane $ T $ | ||
+ | and that the secant lines $ \overline{ {x _ {k} y _ {k} }}\; $ | ||
+ | converge to some line $ l $( | ||
+ | all with respect to some local coordinate system around $ y $ | ||
+ | in the ambient manifold $ M $). | ||
+ | Then | ||
− | A) | + | A) $ T _ {y} S _ {i} \subset T $; |
− | B) | + | B) $ l \subset T $. |
Condition B) implies in fact condition A). | Condition B) implies in fact condition A). | ||
− | A few facts and theorems concerning Whitney stratifications are as follows. Any closed subanalytic subset of an analytic manifold admits a Whitney stratification, [[#References|[a5]]]. In particular, algebraic sets in | + | A few facts and theorems concerning Whitney stratifications are as follows. Any closed subanalytic subset of an analytic manifold admits a Whitney stratification, [[#References|[a5]]]. In particular, algebraic sets in $ \mathbf R ^ {n} $, |
+ | i.e. sets given by the vanishing of finitely many polynomials (cf. also [[Semi-algebraic set|Semi-algebraic set]]), can be Whitney stratified. Whitney stratified spaces can be triangulated, [[#References|[a4]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Mather, "Notes on topological stability" , Harvard Univ. Press (1970) (Mimeographed notes)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.G. Gibson, K. Wirthmüller, A.A. du Plessis, E.J.N. Looijenga, "Topological stability of smooth mappings" , ''Lect. notes in math.'' , '''552''' , Springer (1976) {{MR|0436203}} {{ZBL|0377.58006}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Goresky, "Stratified Morse theory" , Springer (1988) {{MR|0932724}} {{ZBL|0639.14012}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F. Johnson, "On the triangulation of stratified sets and singular varieties" ''Trans. Amer. Math. Soc.'' , '''275''' (1983) pp. 333–343 {{MR|0678354}} {{ZBL|0511.58007}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> H. Hironaka, "Subanalytic sets" , ''Number theory, algebraic geometry and commutative algebra'' , Kinokuniya (1973) pp. 453–493 {{MR|0377101}} {{ZBL|0297.32008}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Whitney, "Tangents to an analytic variety" ''Ann. of Math.'' , '''81''' (1965) pp. 496–549 {{MR|0192520}} {{ZBL|0152.27701}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> H. Whitney, "Local properties of analytic varieties" S. Cairns (ed.) , ''Differentiable and Combinatorial Topology'' , Princeton Univ. Press (1965) pp. 205–244 {{MR|0188486}} {{ZBL|0129.39402}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R. Thom, "Propriétés différentielles locales des ensembles analytiques" , ''Sem. Bourbaki'' , '''Exp. 281''' (1964/5) {{MR|1608789}} {{ZBL|0184.31402}} </TD></TR></table> |
Latest revision as of 08:23, 6 June 2020
A decomposition of a (possibly infinite-dimensional) manifold into connected submanifolds of strictly-diminishing dimensions.
Comments
Usually a "stratification" of a space means more than just some decomposition into connected pieces with diminishing dimensions.
Let $ ( P, < ) $ be a partially ordered set. A $ P $- decomposition of a topological space $ X $ is a locally finite collection of subspaces $ S _ {i} $ of $ X $, labelled by the elements of $ P $, such that:
1) $ S _ {i} \cap S _ {j} = \emptyset $ if $ i \neq j $;
2) $ S _ {i} $ is locally closed for all $ i \in P $;
3) $ X = \cup _ {i \in P } S _ {i} $;
4) if $ S _ {i} \cap \overline{ {S _ {j} }}\; \neq \emptyset $, then $ S _ {i} \subset \overline{ {S _ {j} }}\; $( and this is equivalent to $ i \leq j $ in $ P $).
As an example, consider the subset of $ \mathbf R ^ {2} $ given by the inequality $ x ^ {3} - y ^ {2} \geq 0 $ divided into the four pieces $ \{ {( x, y) } : {x ^ {3} - y ^ {2} > 0 } \} $, $ \{ {( x, y) } : {x ^ {3} = y ^ {2} , y > 0 } \} $, $ \{ {( x, y) } : {x ^ {3} = y ^ {2} , y < 0 } \} $, $ \{ ( 0, 0) \} $.
Now let $ X $ be a subset of a smooth manifold $ M $. A stratification of $ X $ is a $ P $- decomposition $ ( S _ {i} ) _ {i \in P } $ for some partially ordered set $ P $ such that each of the pieces is a smooth submanifold of $ M $.
The stratification $ ( S _ {i} ) $ is called a Whitney stratification if for every pair of strata $ S _ {i} , S _ {j} $ with $ S _ {i} \subset \overline{ {S _ {j} }}\; $ the following Whitney's conditions $ A $ and $ B $ hold. Suppose that a sequence of points $ y _ {k} \in S _ {i} $ converges to $ y \in S _ {i} $ and a sequence of points $ x _ {k} \in S _ {j} $ also converges to $ y \in S _ {i} $. Suppose, moreover, that the tangent planes $ T _ {x _ {k} } S _ {j} $ converge to some limiting plane $ T $ and that the secant lines $ \overline{ {x _ {k} y _ {k} }}\; $ converge to some line $ l $( all with respect to some local coordinate system around $ y $ in the ambient manifold $ M $). Then
A) $ T _ {y} S _ {i} \subset T $;
B) $ l \subset T $.
Condition B) implies in fact condition A).
A few facts and theorems concerning Whitney stratifications are as follows. Any closed subanalytic subset of an analytic manifold admits a Whitney stratification, [a5]. In particular, algebraic sets in $ \mathbf R ^ {n} $, i.e. sets given by the vanishing of finitely many polynomials (cf. also Semi-algebraic set), can be Whitney stratified. Whitney stratified spaces can be triangulated, [a4].
References
[a1] | J. Mather, "Notes on topological stability" , Harvard Univ. Press (1970) (Mimeographed notes) |
[a2] | C.G. Gibson, K. Wirthmüller, A.A. du Plessis, E.J.N. Looijenga, "Topological stability of smooth mappings" , Lect. notes in math. , 552 , Springer (1976) MR0436203 Zbl 0377.58006 |
[a3] | M. Goresky, "Stratified Morse theory" , Springer (1988) MR0932724 Zbl 0639.14012 |
[a4] | F. Johnson, "On the triangulation of stratified sets and singular varieties" Trans. Amer. Math. Soc. , 275 (1983) pp. 333–343 MR0678354 Zbl 0511.58007 |
[a5] | H. Hironaka, "Subanalytic sets" , Number theory, algebraic geometry and commutative algebra , Kinokuniya (1973) pp. 453–493 MR0377101 Zbl 0297.32008 |
[a6] | H. Whitney, "Tangents to an analytic variety" Ann. of Math. , 81 (1965) pp. 496–549 MR0192520 Zbl 0152.27701 |
[a7] | H. Whitney, "Local properties of analytic varieties" S. Cairns (ed.) , Differentiable and Combinatorial Topology , Princeton Univ. Press (1965) pp. 205–244 MR0188486 Zbl 0129.39402 |
[a8] | R. Thom, "Propriétés différentielles locales des ensembles analytiques" , Sem. Bourbaki , Exp. 281 (1964/5) MR1608789 Zbl 0184.31402 |
Stratification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stratification&oldid=16887