Difference between revisions of "Stochastic differential equation"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0900801.png | ||
+ | $#A+1 = 85 n = 0 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/S090/S.0900080 Stochastic differential equation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''for a process $ X=( X _ {t} ) _ {t\geq } 0 $ | ||
+ | with respect to a [[Wiener process|Wiener process]] $ W = ( W _ {t} ) _ {t\geq } 0 $'' | ||
+ | |||
+ | {{MSC|60H10}} | ||
+ | |||
+ | [[Category:Stochastic analysis]] | ||
An equation of the form | An equation of the form | ||
− | + | $$ \tag{1 } | |
+ | dX _ {t} = a( t, X) dt + b( t, X) dW _ {t} ,\ X _ {0} = \xi , | ||
+ | $$ | ||
− | where | + | where $ a( t, X) $ |
+ | and $ b( t, X) $ | ||
+ | are non-anticipative functionals, and the random variable $ \xi $ | ||
+ | plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak. | ||
− | Let | + | Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ |
+ | be a probability space with an increasing family of $ \sigma $- | ||
+ | algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, | ||
+ | and let $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | be a Wiener process. One says that a continuous stochastic process $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | is a strong solution of the stochastic differential equation (1) with drift coefficient $ a( t, X) $, | ||
+ | diffusion coefficient $ b( t, X) $ | ||
+ | and initial value $ \xi $, | ||
+ | if for every $ t > 0 $ | ||
+ | with probability one: | ||
− | + | $$ \tag{2 } | |
+ | X _ {t} = \xi + \int\limits _ { 0 } ^ { t } a( s, X) ds + \int\limits _ { 0 } ^ { t } b( s, X) dW _ {s} , | ||
+ | $$ | ||
where it is supposed that the integrals in (2) are defined. | where it is supposed that the integrals in (2) are defined. | ||
Line 15: | Line 48: | ||
The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form | The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form | ||
− | + | $$ \tag{3 } | |
+ | dX _ {t} = a( t, X _ {t} ) dt + b( t, X _ {t} ) dW _ {t} $$ | ||
− | was obtained by K. Itô. He demonstrated that if for every | + | was obtained by K. Itô. He demonstrated that if for every $ t > 0 $ |
+ | the functions $ a( t, x) $ | ||
+ | and $ b( t, x) $ | ||
+ | satisfy a Lipschitz condition with respect to $ x $ | ||
+ | and increase not faster than linearly, then a continuous solution $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | of the equation (3) exists, and this solution is unique in the sense that if $ Y = ( Y _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | is another continuous solution, then | ||
− | + | $$ | |
+ | {\mathsf P} \left \{ \sup _ { s\leq } t | X _ {s} - Y _ {s} | > 0 | ||
+ | \right \} = 0,\ t \geq 0. | ||
+ | $$ | ||
− | If | + | If $ b( t, x) \equiv \textrm{ const } $, |
+ | the measurability and boundedness of the drift coefficient (vector) $ a( t, x) $ | ||
+ | guarantees the existence and uniqueness of a strong solution of (3). The equation $ dX _ {t} = a( t, X) dt+ dW _ {t} $, | ||
+ | generally speaking, does not have a strong solution for any bounded non-anticipative functional $ a( t, X) $. | ||
− | When studying the concept of a weak solution of the stochastic differential equation (1), the probability space | + | When studying the concept of a weak solution of the stochastic differential equation (1), the probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $ |
+ | with the family of $ \sigma $- | ||
+ | algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, | ||
+ | the Wiener process $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | and the random variable $ \xi $ | ||
+ | are not fixed in advance, but the non-anticipative functionals $ a( t, X) $, | ||
+ | $ b( t, X) $, | ||
+ | defined for continuous functions $ X = ( X _ {t} ) _ {t\geq } 0 $, | ||
+ | and the distribution function $ F( x) $( | ||
+ | so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given $ a( t, X) $, | ||
+ | $ b( t, X) $ | ||
+ | and $ F( x) $ | ||
+ | one understands a set of objects | ||
− | + | $$ | |
+ | \widetilde {\mathcal A} = ( \widetilde \Omega , \widetilde {\mathcal F} , ( \widetilde {\mathcal F} _ {t} ) _ {t\geq } 0 ,\ \ | ||
+ | \widetilde{W} = ( \widetilde{W} _ {t} ) _ {t\geq } 0 ,\ \ | ||
+ | \widetilde{X} = ( \widetilde{X} _ {t} ) _ {t\geq } 0 , {\mathsf P} ), | ||
+ | $$ | ||
− | where | + | where $ \widetilde{W} = ( \widetilde{W} {} _ {t} ) _ {t\geq } 0 $ |
+ | is a Wiener process relative to $ (( {\mathcal F} _ {t} ) _ {t\geq } 0 , {\mathsf P}) $, | ||
+ | and $ \widetilde{W} $ | ||
+ | and $ \widetilde{X} $ | ||
+ | are related by | ||
− | + | $$ | |
+ | \widetilde{X} _ {t} = \widetilde{X} _ {0} + \int\limits _ { 0 } ^ { t } a( s, \widetilde{X} ) ds + \int\limits _ { 0 } ^ { t } b( s, \widetilde{X} ) d \widetilde{W} _ {s} , | ||
+ | $$ | ||
− | and | + | and $ \widetilde {\mathsf P} \{ \widetilde{X} _ {0} \leq x \} = F( x) $. |
+ | The term "weak solution" sometimes applies only to the process $ \widetilde{X} $ | ||
+ | that appears in the set $ \widetilde {\mathcal A} $. | ||
+ | A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that $ b ^ {2} ( t, x) \geq c > 0 $, | ||
+ | and that $ b ^ {2} ( t, x) $ | ||
+ | be continuous in $ ( t, x) $, | ||
+ | that $ a( t, x) $ | ||
+ | be measurable in $ ( t, x) $, | ||
+ | and that $ | a | + | b | \leq \textrm{ const } $. | ||
− | The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let | + | The development of the theory of stochastic integration (see [[Stochastic integral|Stochastic integral]]) using semi-martingales (cf. [[Semi-martingale|Semi-martingale]]) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ |
+ | be a probability space, let $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | be an increasing family of $ \sigma $- | ||
+ | algebras, let $ Z = ( Z _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ | ||
+ | be an $ m $- | ||
+ | dimensional semi-martingale, and let $ G( t, X) = \| g ^ {ij} ( t, X) \| _ {ij} $ | ||
+ | be a matrix consisting of non-anticipative functionals $ g ^ {ij} ( t, X) $ | ||
+ | such that | ||
− | + | $$ | |
+ | | g ^ {ij} ( t, X) - g ^ {ij} ( t, Y) | \leq L _ {t} ^ {ij} \sup _ { s\leq } t | X _ {s} - Y _ {s} | , | ||
+ | $$ | ||
− | where the | + | where the $ L _ {t} ^ {ij} $ |
+ | do not increase too rapidly (in $ t $). | ||
+ | Then the stochastic differential equation $ dX _ {t} = G( t, X) dZ _ {t} $, | ||
+ | $ X _ {0} = 0 $, | ||
+ | has a unique strong solution. | ||
− | If the functions | + | If the functions $ a( t, x) $ |
+ | and $ b( t, x) $, | ||
+ | $ t \geq 0 $, | ||
+ | $ x \in \mathbf R $, | ||
+ | satisfy a Lipschitz condition (in $ x $) | ||
+ | and do not increase faster than linearly, then the solution $ X = ( X _ {t} ) _ {t\geq } 0 $ | ||
+ | of equation (3) (unique up to [[Stochastic equivalence|stochastic equivalence]]) will be a Markov process. If, moreover, $ a( t, x) $ | ||
+ | and $ b( t, x) $ | ||
+ | are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes. | ||
− | Given certain extra conditions of smoothness on the functions | + | Given certain extra conditions of smoothness on the functions $ a( t, x) $ |
+ | and $ b( t, x) $, | ||
+ | the solution $ ( X _ {t} ^ {x} ) _ {t\geq } 0 $ | ||
+ | of equation (3) with initial condition $ X _ {0} ^ {x} = x $ | ||
+ | is such that the function $ u( s, x) = {\mathsf E} f( X _ {s} ^ {x} ) $, | ||
+ | given a sufficiently smooth function $ f( x) $, | ||
+ | satisfies the backward Kolmogorov equation | ||
− | + | $$ | |
− | + | \frac{\partial u( s, x) }{\partial s } | |
+ | + a( s, x) | ||
+ | \frac{\partial u( s, x) }{\partial x } | ||
− | + | + | |
+ | \frac{b ^ {2} ( s, x) }{2} | ||
+ | |||
+ | \frac{\partial ^ {2} u ( s, x) }{\partial x ^ {2} } | ||
+ | = \ | ||
+ | 0, | ||
+ | $$ | ||
− | + | in the domain $ s \in ( 0, t) $, | |
− | + | $ x \in \mathbf R $, | |
+ | with the boundary condition | ||
+ | $$ | ||
+ | \lim\limits _ { s\downarrow } t u( s, x) = f( x). | ||
+ | $$ | ||
+ | ====References==== | ||
+ | {| | ||
+ | |valign="top"|{{Ref|GS}}|| I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) {{MR|0678374}} {{ZBL|0557.60041}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|LS}}|| R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''1–2''' , Springer (1977–1978) (Translated from Russian) {{MR|1800858}} {{MR|1800857}} {{MR|0608221}} {{MR|0488267}} {{MR|0474486}} {{ZBL|1008.62073}} {{ZBL|1008.62072}} {{ZBL|0556.60003}} {{ZBL|0369.60001}} {{ZBL|0364.60004}} | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|A}}|| L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) {{MR|0443083}} {{ZBL|0278.60039}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|B}}|| H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) {{MR|423523}} {{ZBL|}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|F}}|| A. Freedman, "Stochastic differential equations and applications" , '''1''' , Acad. Press (1975) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|H}}|| R.Z. Hasminski, "Stochastic stability of differential equations" , Sijthoff & Noordhoff (1980) (Translated from Russian) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|IW}}|| N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland & Kodansha (1981) {{MR|0637061}} {{ZBL|0495.60005}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|So}}|| T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) {{MR|0451405}} {{ZBL|0348.60081}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|SrVs}}|| S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) {{MR|0329025}} {{ZBL|0242.60002}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|St}}|| R.L. Stratonovich, "Topics in the theory of random noise" , '''1–2''' , Gordon & Breach (1963–1967) {{MR|0158437}} {{ZBL|0183.22007}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|StVa}}|| D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) {{MR|0532498}} {{ZBL|0426.60069}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|G}}|| Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) {{MR|0917064}} {{ZBL|0628.60064}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ø}}|| B. Øksendahl, "Stochastic differential equations" , Springer (1987) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|P}}|| P. Protter, "Stochastic integration and differential equations" , Springer (1990) {{MR|1037262}} {{ZBL|0694.60047}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|AR}}|| S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" ''Probab. Th. Rel. Fields'' , '''89''' (1991) pp. 347–386 {{MR|1113223}} {{ZBL|0725.60055}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|El}}|| K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) {{MR|0675100}} {{ZBL|0514.58001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Em}}|| M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) {{MR|1030543}} {{ZBL|0697.60060}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Sob}}|| K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) {{MR|1135326}} {{ZBL|0762.60050}} | ||
+ | |} |
Latest revision as of 08:23, 6 June 2020
for a process $ X=( X _ {t} ) _ {t\geq } 0 $
with respect to a Wiener process $ W = ( W _ {t} ) _ {t\geq } 0 $
2020 Mathematics Subject Classification: Primary: 60H10 [MSN][ZBL]
An equation of the form
$$ \tag{1 } dX _ {t} = a( t, X) dt + b( t, X) dW _ {t} ,\ X _ {0} = \xi , $$
where $ a( t, X) $ and $ b( t, X) $ are non-anticipative functionals, and the random variable $ \xi $ plays the part of the initial value. There are two separate concepts for a solution of a stochastic differential equation — strong and weak.
Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ be a probability space with an increasing family of $ \sigma $- algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, and let $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ be a Wiener process. One says that a continuous stochastic process $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ is a strong solution of the stochastic differential equation (1) with drift coefficient $ a( t, X) $, diffusion coefficient $ b( t, X) $ and initial value $ \xi $, if for every $ t > 0 $ with probability one:
$$ \tag{2 } X _ {t} = \xi + \int\limits _ { 0 } ^ { t } a( s, X) ds + \int\limits _ { 0 } ^ { t } b( s, X) dW _ {s} , $$
where it is supposed that the integrals in (2) are defined.
The first general result on the existence and uniqueness of a strong solution of a stochastic differential equation of the form
$$ \tag{3 } dX _ {t} = a( t, X _ {t} ) dt + b( t, X _ {t} ) dW _ {t} $$
was obtained by K. Itô. He demonstrated that if for every $ t > 0 $ the functions $ a( t, x) $ and $ b( t, x) $ satisfy a Lipschitz condition with respect to $ x $ and increase not faster than linearly, then a continuous solution $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ of the equation (3) exists, and this solution is unique in the sense that if $ Y = ( Y _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ is another continuous solution, then
$$ {\mathsf P} \left \{ \sup _ { s\leq } t | X _ {s} - Y _ {s} | > 0 \right \} = 0,\ t \geq 0. $$
If $ b( t, x) \equiv \textrm{ const } $, the measurability and boundedness of the drift coefficient (vector) $ a( t, x) $ guarantees the existence and uniqueness of a strong solution of (3). The equation $ dX _ {t} = a( t, X) dt+ dW _ {t} $, generally speaking, does not have a strong solution for any bounded non-anticipative functional $ a( t, X) $.
When studying the concept of a weak solution of the stochastic differential equation (1), the probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $ with the family of $ \sigma $- algebras $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $, the Wiener process $ W = ( W _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ and the random variable $ \xi $ are not fixed in advance, but the non-anticipative functionals $ a( t, X) $, $ b( t, X) $, defined for continuous functions $ X = ( X _ {t} ) _ {t\geq } 0 $, and the distribution function $ F( x) $( so to speak, the initial value) are fixed. Then by a weak solution of the equation (1) with given $ a( t, X) $, $ b( t, X) $ and $ F( x) $ one understands a set of objects
$$ \widetilde {\mathcal A} = ( \widetilde \Omega , \widetilde {\mathcal F} , ( \widetilde {\mathcal F} _ {t} ) _ {t\geq } 0 ,\ \ \widetilde{W} = ( \widetilde{W} _ {t} ) _ {t\geq } 0 ,\ \ \widetilde{X} = ( \widetilde{X} _ {t} ) _ {t\geq } 0 , {\mathsf P} ), $$
where $ \widetilde{W} = ( \widetilde{W} {} _ {t} ) _ {t\geq } 0 $ is a Wiener process relative to $ (( {\mathcal F} _ {t} ) _ {t\geq } 0 , {\mathsf P}) $, and $ \widetilde{W} $ and $ \widetilde{X} $ are related by
$$ \widetilde{X} _ {t} = \widetilde{X} _ {0} + \int\limits _ { 0 } ^ { t } a( s, \widetilde{X} ) ds + \int\limits _ { 0 } ^ { t } b( s, \widetilde{X} ) d \widetilde{W} _ {s} , $$
and $ \widetilde {\mathsf P} \{ \widetilde{X} _ {0} \leq x \} = F( x) $. The term "weak solution" sometimes applies only to the process $ \widetilde{X} $ that appears in the set $ \widetilde {\mathcal A} $. A weak solution of equation (3) exists under weaker hypotheses. It is sufficient, for example, that $ b ^ {2} ( t, x) \geq c > 0 $, and that $ b ^ {2} ( t, x) $ be continuous in $ ( t, x) $, that $ a( t, x) $ be measurable in $ ( t, x) $, and that $ | a | + | b | \leq \textrm{ const } $.
The development of the theory of stochastic integration (see Stochastic integral) using semi-martingales (cf. Semi-martingale) and random measures has led to the study of more general stochastic differential equations, where semi-martingales and random measures are used as generators (along with a Wiener process). The following result is typical. Let $ ( \Omega , {\mathcal F} , {\mathsf P}) $ be a probability space, let $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t\geq } 0 $ be an increasing family of $ \sigma $- algebras, let $ Z = ( Z _ {t} , {\mathcal F} _ {t} ) _ {t\geq } 0 $ be an $ m $- dimensional semi-martingale, and let $ G( t, X) = \| g ^ {ij} ( t, X) \| _ {ij} $ be a matrix consisting of non-anticipative functionals $ g ^ {ij} ( t, X) $ such that
$$ | g ^ {ij} ( t, X) - g ^ {ij} ( t, Y) | \leq L _ {t} ^ {ij} \sup _ { s\leq } t | X _ {s} - Y _ {s} | , $$
where the $ L _ {t} ^ {ij} $ do not increase too rapidly (in $ t $). Then the stochastic differential equation $ dX _ {t} = G( t, X) dZ _ {t} $, $ X _ {0} = 0 $, has a unique strong solution.
If the functions $ a( t, x) $ and $ b( t, x) $, $ t \geq 0 $, $ x \in \mathbf R $, satisfy a Lipschitz condition (in $ x $) and do not increase faster than linearly, then the solution $ X = ( X _ {t} ) _ {t\geq } 0 $ of equation (3) (unique up to stochastic equivalence) will be a Markov process. If, moreover, $ a( t, x) $ and $ b( t, x) $ are continuous in all variables, then this will be a diffusion process. Using stochastic differential equations, starting only from a Wiener process, it is thus possible to construct Markov and diffusion processes.
Given certain extra conditions of smoothness on the functions $ a( t, x) $ and $ b( t, x) $, the solution $ ( X _ {t} ^ {x} ) _ {t\geq } 0 $ of equation (3) with initial condition $ X _ {0} ^ {x} = x $ is such that the function $ u( s, x) = {\mathsf E} f( X _ {s} ^ {x} ) $, given a sufficiently smooth function $ f( x) $, satisfies the backward Kolmogorov equation
$$ \frac{\partial u( s, x) }{\partial s } + a( s, x) \frac{\partial u( s, x) }{\partial x } + \frac{b ^ {2} ( s, x) }{2} \frac{\partial ^ {2} u ( s, x) }{\partial x ^ {2} } = \ 0, $$
in the domain $ s \in ( 0, t) $, $ x \in \mathbf R $, with the boundary condition
$$ \lim\limits _ { s\downarrow } t u( s, x) = f( x). $$
References
[GS] | I.I. Gikhman, A.V. Skorokhod, "Stochastic differential equations and their applications" , Springer (1972) (Translated from Russian) MR0678374 Zbl 0557.60041 |
[LS] | R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , 1–2 , Springer (1977–1978) (Translated from Russian) MR1800858 MR1800857 MR0608221 MR0488267 MR0474486 Zbl 1008.62073 Zbl 1008.62072 Zbl 0556.60003 Zbl 0369.60001 Zbl 0364.60004 |
Comments
References
[A] | L. Arnold, "Stochastic differential equations" , Wiley (1974) (Translated from Russian) MR0443083 Zbl 0278.60039 |
[B] | H. Bunke, "Gewöhnliche Differentialgleichungen mit zufällige Parametern" , Akademie Verlag (1972) MR423523 |
[F] | A. Freedman, "Stochastic differential equations and applications" , 1 , Acad. Press (1975) |
[H] | R.Z. Hasminski, "Stochastic stability of differential equations" , Sijthoff & Noordhoff (1980) (Translated from Russian) |
[IW] | N. Ikeda, S. Watanabe, "Stochastic differential equations and diffusion processes" , North-Holland & Kodansha (1981) MR0637061 Zbl 0495.60005 |
[So] | T.T. Soong, "Random differential equations in science and engineering" , Acad. Press (1973) MR0451405 Zbl 0348.60081 |
[SrVs] | S.K. Srinivasan, R. Vasudevan, "Introduction to random differential equations and their applications" , Amer. Elsevier (1971) MR0329025 Zbl 0242.60002 |
[St] | R.L. Stratonovich, "Topics in the theory of random noise" , 1–2 , Gordon & Breach (1963–1967) MR0158437 Zbl 0183.22007 |
[StVa] | D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) MR0532498 Zbl 0426.60069 |
[G] | Th. Gard, "Introduction to stochastic differential equations" , M. Dekker (1988) MR0917064 Zbl 0628.60064 |
[Ø] | B. Øksendahl, "Stochastic differential equations" , Springer (1987) |
[P] | P. Protter, "Stochastic integration and differential equations" , Springer (1990) MR1037262 Zbl 0694.60047 |
[AR] | S. Albeverio, M. Röckner, "Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms" Probab. Th. Rel. Fields , 89 (1991) pp. 347–386 MR1113223 Zbl 0725.60055 |
[El] | K.D. Elworthy, "Stochastic differential equations on manifolds" , Cambridge Univ. Press (1982) MR0675100 Zbl 0514.58001 |
[Em] | M. Emery, "Stochastic calculus in manifolds" , Springer (1989) ((Appendix by P.A. Meyer.)) MR1030543 Zbl 0697.60060 |
[Sob] | K. Sobczyk, "Stochastic differential equations. With applications to physics and engineering" , Kluwer (1991) MR1135326 Zbl 0762.60050 |
Stochastic differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_differential_equation&oldid=23659