Difference between revisions of "Stochastic basis"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0900201.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/S090/S.0900020 Stochastic basis | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A complete probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $ | |
+ | with an increasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $ | ||
+ | of sub- $ \sigma $- | ||
+ | algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $, | ||
+ | which satisfies the (so-called usual) conditions: | ||
− | + | 1) it must be continuous from the right, $ {\mathcal F} _ {t} = {\mathcal F} _ {t ^ {+} } $( | |
+ | $ = \cap _ {s>} t {\mathcal F} _ {s} $), | ||
+ | $ t \geq 0 $; | ||
+ | 2) it must be complete, i.e. $ {\mathcal F} _ {t} $ | ||
+ | contains all subsets from $ {\mathcal F} $ | ||
+ | of $ {\mathsf P} $- | ||
+ | measure zero. | ||
+ | For stochastic bases, the notations $ ( \Omega , {\mathcal F}, \mathbf F , {\mathsf P}) $ | ||
+ | or $ ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t \geq 0 } , {\mathsf P}) $ | ||
+ | are also used. | ||
====Comments==== | ====Comments==== | ||
− | An increasing family of ( | + | An increasing family of ( $ \sigma $-) |
+ | algebras is usually called a filtration. |
Latest revision as of 08:23, 6 June 2020
A complete probability space $ ( \Omega , {\mathcal F} , {\mathsf P}) $
with an increasing family $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $
of sub- $ \sigma $-
algebras $ {\mathcal F} _ {t} \subseteq {\mathcal F} $,
which satisfies the (so-called usual) conditions:
1) it must be continuous from the right, $ {\mathcal F} _ {t} = {\mathcal F} _ {t ^ {+} } $( $ = \cap _ {s>} t {\mathcal F} _ {s} $), $ t \geq 0 $;
2) it must be complete, i.e. $ {\mathcal F} _ {t} $ contains all subsets from $ {\mathcal F} $ of $ {\mathsf P} $- measure zero.
For stochastic bases, the notations $ ( \Omega , {\mathcal F}, \mathbf F , {\mathsf P}) $ or $ ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t \geq 0 } , {\mathsf P}) $ are also used.
Comments
An increasing family of ( $ \sigma $-) algebras is usually called a filtration.
Stochastic basis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_basis&oldid=16490