Difference between revisions of "Stability for a part of the variables"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0869601.png | ||
+ | $#A+1 = 108 n = 0 | ||
+ | $#C+1 = 108 : ~/encyclopedia/old_files/data/S086/S.0806960 Stability for a part of the variables | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | [[Lyapunov stability|Lyapunov stability]] of the solution $ x = 0 $ | |
+ | relative not to all but only to certain variables $ x _ {1} \dots x _ {k} $, | ||
+ | $ k < n $, | ||
+ | of a system of ordinary differential equations | ||
− | + | $$ \tag{1 } | |
+ | \dot{x} _ {s} = X _ {s} ( t, x _ {1} \dots x _ {n} ),\ \ | ||
+ | s = 1 \dots n. | ||
+ | $$ | ||
− | + | Here $ X _ {s} ( t, x) $ | |
+ | are given real-valued continuous functions, satisfying in the domain | ||
− | + | $$ \tag{2 } | |
+ | t \geq 0,\ \ | ||
+ | \sum _ {i = 1 } ^ { k } | ||
+ | x _ {i} ^ {2} \leq \textrm{ const } ,\ \ | ||
+ | \sum _ {j = k + 1 } ^ { n } | ||
+ | x _ {j} ^ {2} < \infty | ||
+ | $$ | ||
− | and | + | the conditions for the existence and uniqueness of the solution $ x ( t; t _ {0} , x _ {0} ) $; |
+ | moreover, | ||
− | + | $$ | |
+ | X _ {s} ( t, 0) \equiv 0,\ s = 1 \dots n, | ||
+ | $$ | ||
− | + | and any solution is defined for all $ t \geq t _ {0} \geq 0 $ | |
+ | for which $ \sum _ {i = 1 } ^ {k} x _ {i} ^ {2} \leq H $. | ||
− | + | Put $ x _ {i} = y _ {i} $ | |
+ | for $ i = 1 \dots k $; | ||
+ | $ x _ {k + j } = z _ {j} $ | ||
+ | for $ j = 1 \dots m $, | ||
+ | $ n = k + m $ | ||
+ | and $ m \geq 0 $; | ||
+ | let | ||
− | + | $$ | |
+ | \| y \| = \ | ||
+ | \left ( \sum _ {i = 1 } ^ { k } y _ {i} ^ {2} \right ) ^ {1/2} ,\ \ | ||
+ | \| z \| = \ | ||
+ | \left ( \sum _ {j = 1 } ^ { m } z _ {j} ^ {2} \right ) ^ {1/2} , | ||
+ | $$ | ||
− | + | $$ | |
+ | \| x \| = \left ( \sum _ {s = 1 } ^ { n } x _ {s} ^ {2} \right ) ^ {1/2} . | ||
+ | $$ | ||
− | + | The solution $ x = 0 $ | |
+ | of the system (1) is called: a) stable relative to $ x _ {1} \dots x _ {k} $ | ||
+ | or $ y $- | ||
+ | stable if | ||
− | + | $$ | |
+ | ( \forall \epsilon > 0) | ||
+ | ( \forall t _ {0} \in I) | ||
+ | ( \exists \delta > 0) | ||
+ | ( \forall x _ {0} \in B _ \delta ) | ||
+ | ( \forall t \in J ^ {+} ): | ||
+ | $$ | ||
− | + | $$ | |
+ | \| y ( t; t _ {0} , x _ {0} ) \| < \epsilon , | ||
+ | $$ | ||
− | + | i.e. for any given numbers $ \epsilon > 0 $( | |
+ | $ \epsilon < H $) | ||
+ | and $ t _ {0} \geq 0 $ | ||
+ | one can find a number $ \delta ( \epsilon , t _ {0} ) > 0 $ | ||
+ | such that for every perturbation $ x _ {0} $ | ||
+ | satisfying the condition $ \| x _ {0} \| \leq \delta $ | ||
+ | and for every $ t > t _ {0} $ | ||
+ | the solution $ y ( t; t _ {0} , x _ {0} ) $ | ||
+ | satisfies the condition $ \| y \| < \epsilon $; | ||
− | + | b) $ y $- | |
+ | unstable in the opposite case, i.e. if | ||
− | + | $$ | |
+ | ( \exists \epsilon > 0) | ||
+ | ( \exists t _ {0} \in I) | ||
+ | ( \forall \delta > 0) | ||
+ | ( \exists x _ {0} \in B _ \delta ) | ||
+ | ( \exists t \in J ^ {+} ): | ||
+ | $$ | ||
− | + | $$ | |
+ | \| y ( t; t _ {0} , x _ {0} ) \| \geq \epsilon ; | ||
+ | $$ | ||
− | + | c) $ y $- | |
+ | stable uniformly in $ t _ {0} $ | ||
+ | if in definition a) for every $ \epsilon > 0 $ | ||
+ | the number $ \delta ( \epsilon ) $ | ||
+ | may be chosen independently of $ t _ {0} $; | ||
− | + | d) asymptotically $ y $- | |
+ | stable if it is $ y $- | ||
+ | stable and if for every $ t _ {0} \geq 0 $ | ||
+ | there exists a $ \delta _ {1} ( t _ {0} ) > 0 $ | ||
+ | such that | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow \infty } \| y ( t; t _ {0} , x _ {0} ) \| = 0 \ \ | ||
+ | \textrm{ for } \| x _ {0} \| \leq \delta _ {1} . | ||
+ | $$ | ||
− | + | Here $ I = [ 0, \infty ) $, | |
+ | $ J ^ {+} $ | ||
+ | is the maximal right interval on which $ x ( t; t _ {0} , x _ {0} ) $ | ||
+ | is defined, $ B _ \delta = \{ {x \in \mathbf R ^ {n} } : {\| x \| < \delta } \} $; | ||
+ | in case d), besides the conditions stated above it is assumed that all solutions of the system (1) exist on $ [ t _ {0} , \infty ) $. | ||
− | + | The statement of the problem of stability for a part of the variables was given by A.M. Lyapunov [[#References|[1]]] as a generalization of the stability problem with respect to all variables $ ( k = n) $. | |
+ | For a solution of this problem it is particularly effective to apply the method of Lyapunov functions, suitably modified (cf. [[#References|[2]]], and [[Lyapunov function|Lyapunov function]]) for the problem of $ y $- | ||
+ | stability. At the basis of this method there are a number of theorems generalizing the classical theorem of Lyapunov. | ||
− | + | Consider a real-valued function $ V ( t, x) \in C ^ {1} $, | |
+ | $ V ( t, 0) = 0 $, | ||
+ | and at the same time its total derivative with respect to time, using (1): | ||
− | + | $$ | |
+ | \dot{V} = \ | ||
− | + | \frac{\partial V }{\partial t } | |
+ | + | ||
+ | \sum _ {s = 1 } ^ { n } | ||
− | + | \frac{\partial V }{\partial x _ {s} } | |
− | + | X _ {s} . | |
+ | $$ | ||
+ | |||
+ | A function $ V ( t, x) $ | ||
+ | of constant sign is called $ y $- | ||
+ | sign-definite if there exists a positive-definite function $ W ( y) $ | ||
+ | such that in the region (2), | ||
+ | |||
+ | $$ | ||
+ | V ( t, x) \geq W ( y) \ \ | ||
+ | \textrm{ or } \ \ | ||
+ | - V ( t, x) \geq W ( y). | ||
+ | $$ | ||
+ | |||
+ | A bounded function $ V ( t, x) $ | ||
+ | is said to admit an infinitesimal upper bound for $ x _ {1} \dots x _ {p} $ | ||
+ | if for every $ l > 0 $ | ||
+ | there exists a $ \lambda ( l) $ | ||
+ | such that | ||
+ | |||
+ | $$ | ||
+ | | V ( t, x) | < l | ||
+ | $$ | ||
+ | |||
+ | for $ t \geq 0 $, | ||
+ | $ \sum _ {i = 1 } ^ {p} x _ {i} ^ {2} < \lambda $, | ||
+ | $ - \infty < x _ {p + 1 } \dots x _ {n} < \infty $. | ||
===Theorem 1.=== | ===Theorem 1.=== | ||
− | If the system (1) is such that there exists a | + | If the system (1) is such that there exists a $ y $- |
+ | positive-definite function $ V ( t, x) $ | ||
+ | with derivative $ \dot{V} \leq 0 $, | ||
+ | then the solution $ x = 0 $ | ||
+ | is $ y $- | ||
+ | stable. | ||
===Theorem 2.=== | ===Theorem 2.=== | ||
− | If the conditions of theorem 1 are fulfilled and if, moreover, | + | If the conditions of theorem 1 are fulfilled and if, moreover, $ V $ |
+ | admits an infinitesimal upper bound for $ x $, | ||
+ | then the solution $ x = 0 $ | ||
+ | of the system (1) is $ y $- | ||
+ | stable uniformly in $ t _ {0} $. | ||
===Theorem 3.=== | ===Theorem 3.=== | ||
− | If the conditions of theorem 1 are fulfilled and if, moreover, | + | If the conditions of theorem 1 are fulfilled and if, moreover, $ V $ |
+ | admits an infinitesimal upper bound for $ y $, | ||
+ | then for any $ \epsilon > 0 $ | ||
+ | one can find a $ \delta _ {2} ( \epsilon ) > 0 $ | ||
+ | such that $ t _ {0} \geq 0 $, | ||
+ | $ \| y _ {0} \| \leq \delta _ {2} $, | ||
+ | $ 0 \leq \| z _ {0} \| < \infty $ | ||
+ | implies the inequality | ||
− | + | $$ | |
+ | \| y ( t; t _ {0} , x _ {0} ) \| < \ | ||
+ | \epsilon \ \textrm{ for } \textrm{ all } t \geq t _ {0} . | ||
+ | $$ | ||
===Theorem 4.=== | ===Theorem 4.=== | ||
− | If the system (1) is such that there exists a | + | If the system (1) is such that there exists a $ y $- |
+ | positive-definite function $ V $ | ||
+ | admitting an infinitesimal upper bound for $ x _ {1} \dots x _ {p} $( | ||
+ | $ k \leq p \leq n $) | ||
+ | and with negative-definite derivative $ \dot{V} $ | ||
+ | for $ x _ {1} \dots x _ {p} $, | ||
+ | then the solution $ x = 0 $ | ||
+ | of the system (1) is asymptotically $ y $- | ||
+ | stable. | ||
− | For the study of | + | For the study of $ y $- |
+ | instability, Chetaev's instability theorem (cf. [[Chetaev function|Chetaev function]]) has been successfully applied, as well as certain other theorems. Conditions for the converse of a number of theorems on $ y $- | ||
+ | stability have been established; for example, the converses of theorems 1, 2 as well as of theorem 4 for $ p = k $. | ||
+ | Methods of differential inequalities and Lyapunov vector functions have been applied to establish theorems on asymptotic $ y $- | ||
+ | stability in the large, on first-order approximations, etc. (cf. [[#References|[3]]], ). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, ''Mat. Sb.'' , '''17''' : 2 (1893) pp. 253–333</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Rumyantsev, "On stability of motion for a part of the variables" ''Vestn. Moskov. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim.'' : 4 (1957) pp. 9–16 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.S. Oziraner, V.V. Rumyantsev, "The method of Lyapunov functions in the stability problem for motion with respect to a part of the variables" ''J. Appl. Math. Mech.'' , '''36''' (1972) pp. 341–362 ''Prikl. Mat. i Mekh.'' , '''36''' : 2 (1972) pp. 364–384</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, ''Mat. Sb.'' , '''17''' : 2 (1893) pp. 253–333</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.V. Rumyantsev, "On stability of motion for a part of the variables" ''Vestn. Moskov. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim.'' : 4 (1957) pp. 9–16 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.S. Oziraner, V.V. Rumyantsev, "The method of Lyapunov functions in the stability problem for motion with respect to a part of the variables" ''J. Appl. Math. Mech.'' , '''36''' (1972) pp. 341–362 ''Prikl. Mat. i Mekh.'' , '''36''' : 2 (1972) pp. 364–384</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Stability for a part of the variables is also called partial stability and occasionally conditional stability, [[#References|[a1]]]. However, the latter phrase is also used in a different meaning: Let | + | Stability for a part of the variables is also called partial stability and occasionally conditional stability, [[#References|[a1]]]. However, the latter phrase is also used in a different meaning: Let $ C $ |
+ | be a class of trajectories, $ x ( t ; t _ {0} , x _ {0} ) $ | ||
+ | a trajectory in $ C $. | ||
+ | This trajectory is stable relative to $ C $ | ||
+ | if for a given $ \epsilon > 0 $ | ||
+ | there exists a $ \delta > 0 $ | ||
+ | such that for each trajectory $ \widetilde{x} ( t ; t _ {0} , \widetilde{x} {} _ {0} ) $ | ||
+ | one has that $ \| x _ {0} - \widetilde{x} {} _ {0} \| \leq \delta $ | ||
+ | implies $ \| x( t ; t _ {0} , x _ {0} ) - \widetilde{x} ( t ; t _ {0} , \widetilde{x} {} _ {0} ) \| \leq \epsilon $. | ||
+ | If $ C $ | ||
+ | is not the class of all trajectories, such a $ x ( t; t _ {0} , x _ {0} ) $ | ||
+ | is called conditionally stable, [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Hahn, "Stability of motion" , Springer (1965) pp. §55</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lefshetz, "Differential equations: geometric theory" , Dover, reprint (1977) pp. 78, 83</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Hahn, "Stability of motion" , Springer (1965) pp. §55</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lefshetz, "Differential equations: geometric theory" , Dover, reprint (1977) pp. 78, 83</TD></TR></table> |
Latest revision as of 08:22, 6 June 2020
Lyapunov stability of the solution $ x = 0 $
relative not to all but only to certain variables $ x _ {1} \dots x _ {k} $,
$ k < n $,
of a system of ordinary differential equations
$$ \tag{1 } \dot{x} _ {s} = X _ {s} ( t, x _ {1} \dots x _ {n} ),\ \ s = 1 \dots n. $$
Here $ X _ {s} ( t, x) $ are given real-valued continuous functions, satisfying in the domain
$$ \tag{2 } t \geq 0,\ \ \sum _ {i = 1 } ^ { k } x _ {i} ^ {2} \leq \textrm{ const } ,\ \ \sum _ {j = k + 1 } ^ { n } x _ {j} ^ {2} < \infty $$
the conditions for the existence and uniqueness of the solution $ x ( t; t _ {0} , x _ {0} ) $; moreover,
$$ X _ {s} ( t, 0) \equiv 0,\ s = 1 \dots n, $$
and any solution is defined for all $ t \geq t _ {0} \geq 0 $ for which $ \sum _ {i = 1 } ^ {k} x _ {i} ^ {2} \leq H $.
Put $ x _ {i} = y _ {i} $ for $ i = 1 \dots k $; $ x _ {k + j } = z _ {j} $ for $ j = 1 \dots m $, $ n = k + m $ and $ m \geq 0 $; let
$$ \| y \| = \ \left ( \sum _ {i = 1 } ^ { k } y _ {i} ^ {2} \right ) ^ {1/2} ,\ \ \| z \| = \ \left ( \sum _ {j = 1 } ^ { m } z _ {j} ^ {2} \right ) ^ {1/2} , $$
$$ \| x \| = \left ( \sum _ {s = 1 } ^ { n } x _ {s} ^ {2} \right ) ^ {1/2} . $$
The solution $ x = 0 $ of the system (1) is called: a) stable relative to $ x _ {1} \dots x _ {k} $ or $ y $- stable if
$$ ( \forall \epsilon > 0) ( \forall t _ {0} \in I) ( \exists \delta > 0) ( \forall x _ {0} \in B _ \delta ) ( \forall t \in J ^ {+} ): $$
$$ \| y ( t; t _ {0} , x _ {0} ) \| < \epsilon , $$
i.e. for any given numbers $ \epsilon > 0 $( $ \epsilon < H $) and $ t _ {0} \geq 0 $ one can find a number $ \delta ( \epsilon , t _ {0} ) > 0 $ such that for every perturbation $ x _ {0} $ satisfying the condition $ \| x _ {0} \| \leq \delta $ and for every $ t > t _ {0} $ the solution $ y ( t; t _ {0} , x _ {0} ) $ satisfies the condition $ \| y \| < \epsilon $;
b) $ y $- unstable in the opposite case, i.e. if
$$ ( \exists \epsilon > 0) ( \exists t _ {0} \in I) ( \forall \delta > 0) ( \exists x _ {0} \in B _ \delta ) ( \exists t \in J ^ {+} ): $$
$$ \| y ( t; t _ {0} , x _ {0} ) \| \geq \epsilon ; $$
c) $ y $- stable uniformly in $ t _ {0} $ if in definition a) for every $ \epsilon > 0 $ the number $ \delta ( \epsilon ) $ may be chosen independently of $ t _ {0} $;
d) asymptotically $ y $- stable if it is $ y $- stable and if for every $ t _ {0} \geq 0 $ there exists a $ \delta _ {1} ( t _ {0} ) > 0 $ such that
$$ \lim\limits _ {t \rightarrow \infty } \| y ( t; t _ {0} , x _ {0} ) \| = 0 \ \ \textrm{ for } \| x _ {0} \| \leq \delta _ {1} . $$
Here $ I = [ 0, \infty ) $, $ J ^ {+} $ is the maximal right interval on which $ x ( t; t _ {0} , x _ {0} ) $ is defined, $ B _ \delta = \{ {x \in \mathbf R ^ {n} } : {\| x \| < \delta } \} $; in case d), besides the conditions stated above it is assumed that all solutions of the system (1) exist on $ [ t _ {0} , \infty ) $.
The statement of the problem of stability for a part of the variables was given by A.M. Lyapunov [1] as a generalization of the stability problem with respect to all variables $ ( k = n) $. For a solution of this problem it is particularly effective to apply the method of Lyapunov functions, suitably modified (cf. [2], and Lyapunov function) for the problem of $ y $- stability. At the basis of this method there are a number of theorems generalizing the classical theorem of Lyapunov.
Consider a real-valued function $ V ( t, x) \in C ^ {1} $, $ V ( t, 0) = 0 $, and at the same time its total derivative with respect to time, using (1):
$$ \dot{V} = \ \frac{\partial V }{\partial t } + \sum _ {s = 1 } ^ { n } \frac{\partial V }{\partial x _ {s} } X _ {s} . $$
A function $ V ( t, x) $ of constant sign is called $ y $- sign-definite if there exists a positive-definite function $ W ( y) $ such that in the region (2),
$$ V ( t, x) \geq W ( y) \ \ \textrm{ or } \ \ - V ( t, x) \geq W ( y). $$
A bounded function $ V ( t, x) $ is said to admit an infinitesimal upper bound for $ x _ {1} \dots x _ {p} $ if for every $ l > 0 $ there exists a $ \lambda ( l) $ such that
$$ | V ( t, x) | < l $$
for $ t \geq 0 $, $ \sum _ {i = 1 } ^ {p} x _ {i} ^ {2} < \lambda $, $ - \infty < x _ {p + 1 } \dots x _ {n} < \infty $.
Theorem 1.
If the system (1) is such that there exists a $ y $- positive-definite function $ V ( t, x) $ with derivative $ \dot{V} \leq 0 $, then the solution $ x = 0 $ is $ y $- stable.
Theorem 2.
If the conditions of theorem 1 are fulfilled and if, moreover, $ V $ admits an infinitesimal upper bound for $ x $, then the solution $ x = 0 $ of the system (1) is $ y $- stable uniformly in $ t _ {0} $.
Theorem 3.
If the conditions of theorem 1 are fulfilled and if, moreover, $ V $ admits an infinitesimal upper bound for $ y $, then for any $ \epsilon > 0 $ one can find a $ \delta _ {2} ( \epsilon ) > 0 $ such that $ t _ {0} \geq 0 $, $ \| y _ {0} \| \leq \delta _ {2} $, $ 0 \leq \| z _ {0} \| < \infty $ implies the inequality
$$ \| y ( t; t _ {0} , x _ {0} ) \| < \ \epsilon \ \textrm{ for } \textrm{ all } t \geq t _ {0} . $$
Theorem 4.
If the system (1) is such that there exists a $ y $- positive-definite function $ V $ admitting an infinitesimal upper bound for $ x _ {1} \dots x _ {p} $( $ k \leq p \leq n $) and with negative-definite derivative $ \dot{V} $ for $ x _ {1} \dots x _ {p} $, then the solution $ x = 0 $ of the system (1) is asymptotically $ y $- stable.
For the study of $ y $- instability, Chetaev's instability theorem (cf. Chetaev function) has been successfully applied, as well as certain other theorems. Conditions for the converse of a number of theorems on $ y $- stability have been established; for example, the converses of theorems 1, 2 as well as of theorem 4 for $ p = k $. Methods of differential inequalities and Lyapunov vector functions have been applied to establish theorems on asymptotic $ y $- stability in the large, on first-order approximations, etc. (cf. [3], ).
References
[1] | A.M. Lyapunov, Mat. Sb. , 17 : 2 (1893) pp. 253–333 |
[2] | V.V. Rumyantsev, "On stability of motion for a part of the variables" Vestn. Moskov. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim. : 4 (1957) pp. 9–16 (In Russian) |
[3] | A.S. Oziraner, V.V. Rumyantsev, "The method of Lyapunov functions in the stability problem for motion with respect to a part of the variables" J. Appl. Math. Mech. , 36 (1972) pp. 341–362 Prikl. Mat. i Mekh. , 36 : 2 (1972) pp. 364–384 |
Comments
Stability for a part of the variables is also called partial stability and occasionally conditional stability, [a1]. However, the latter phrase is also used in a different meaning: Let $ C $ be a class of trajectories, $ x ( t ; t _ {0} , x _ {0} ) $ a trajectory in $ C $. This trajectory is stable relative to $ C $ if for a given $ \epsilon > 0 $ there exists a $ \delta > 0 $ such that for each trajectory $ \widetilde{x} ( t ; t _ {0} , \widetilde{x} {} _ {0} ) $ one has that $ \| x _ {0} - \widetilde{x} {} _ {0} \| \leq \delta $ implies $ \| x( t ; t _ {0} , x _ {0} ) - \widetilde{x} ( t ; t _ {0} , \widetilde{x} {} _ {0} ) \| \leq \epsilon $. If $ C $ is not the class of all trajectories, such a $ x ( t; t _ {0} , x _ {0} ) $ is called conditionally stable, [a2].
References
[a1] | W. Hahn, "Stability of motion" , Springer (1965) pp. §55 |
[a2] | S. Lefshetz, "Differential equations: geometric theory" , Dover, reprint (1977) pp. 78, 83 |
Stability for a part of the variables. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stability_for_a_part_of_the_variables&oldid=17499